-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathtransformer_wrapper.py
342 lines (288 loc) · 11.3 KB
/
transformer_wrapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import os
import random
import numpy as np
import librosa
import torch
import torch.optim as optim
import pytorch_lightning as pl
import soundfile as sf
from torch.nn.utils.rnn import pad_sequence
from transformers import T5Config, T5ForConditionalGeneration
from midi_tokenizer import MidiTokenizer, extrapolate_beat_times
from layer.input import LogMelSpectrogram, ConcatEmbeddingToMel
from preprocess.beat_quantizer import extract_rhythm, interpolate_beat_times
from utils.dsp import get_stereo
DEFAULT_COMPOSERS = {"various composer": 2052}
class TransformerWrapper(pl.LightningModule):
def __init__(self, config):
super().__init__()
self.config = config
self.tokenizer = MidiTokenizer(config.tokenizer)
self.t5config = T5Config.from_pretrained("t5-small")
for k, v in config.t5.items():
self.t5config.__setattr__(k, v)
self.transformer = T5ForConditionalGeneration(self.t5config)
self.use_mel = self.config.dataset.use_mel
self.mel_is_conditioned = self.config.dataset.mel_is_conditioned
self.composer_to_feature_token = config.composer_to_feature_token
if self.use_mel and not self.mel_is_conditioned:
self.composer_to_feature_token = DEFAULT_COMPOSERS
if self.use_mel:
self.spectrogram = LogMelSpectrogram()
if self.mel_is_conditioned:
n_dim = 512
composer_n_vocab = len(self.composer_to_feature_token)
embedding_offset = min(self.composer_to_feature_token.values())
self.mel_conditioner = ConcatEmbeddingToMel(
embedding_offset=embedding_offset,
n_vocab=composer_n_vocab,
n_dim=n_dim,
)
else:
self.spectrogram = None
self.lr = config.training.lr
def forward(self, input_ids, labels):
"""
Deprecated.
"""
rt = self.transformer(input_ids=input_ids, labels=labels)
return rt
@torch.no_grad()
def single_inference(
self,
feature_tokens=None,
audio=None,
beatstep=None,
max_length=256,
max_batch_size=64,
n_bars=None,
composer_value=None,
):
"""
generate a long audio sequence
feature_tokens or audio : shape (time, )
beatstep : shape (time, )
- input_ids가 해당하는 beatstep 값들
(offset 빠짐, 즉 beatstep[0] == 0)
- beatstep[-1] : input_ids가 끝나는 지점의 시간값
(즉 beatstep[-1] == len(y)//sr)
"""
assert feature_tokens is not None or audio is not None
assert beatstep is not None
if feature_tokens is not None:
assert len(feature_tokens.shape) == 1
if audio is not None:
assert len(audio.shape) == 1
config = self.config
PAD = self.t5config.pad_token_id
n_bars = config.dataset.n_bars if n_bars is None else n_bars
if beatstep[0] > 0.01:
print(
"inference warning : beatstep[0] is not 0 ({beatstep[0]}). all beatstep will be shifted."
)
beatstep = beatstep - beatstep[0]
if self.use_mel:
input_ids = None
inputs_embeds, ext_beatstep = self.prepare_inference_mel(
audio,
beatstep,
n_bars=n_bars,
padding_value=PAD,
composer_value=composer_value,
)
batch_size = inputs_embeds.shape[0]
else:
raise NotImplementedError
# Considering GPU capacity, some sequence would not be generated at once.
relative_tokens = list()
for i in range(0, batch_size, max_batch_size):
start = i
end = min(batch_size, i + max_batch_size)
if input_ids is None:
_input_ids = None
_inputs_embeds = inputs_embeds[start:end]
else:
_input_ids = input_ids[start:end]
_inputs_embeds = None
_relative_tokens = self.transformer.generate(
input_ids=_input_ids,
inputs_embeds=_inputs_embeds,
max_length=max_length,
)
_relative_tokens = _relative_tokens.cpu().numpy()
relative_tokens.append(_relative_tokens)
max_length = max([rt.shape[-1] for rt in relative_tokens])
for i in range(len(relative_tokens)):
relative_tokens[i] = np.pad(
relative_tokens[i],
[(0, 0), (0, max_length - relative_tokens[i].shape[-1])],
constant_values=PAD,
)
relative_tokens = np.concatenate(relative_tokens)
pm, notes = self.tokenizer.relative_batch_tokens_to_midi(
relative_tokens,
beatstep=ext_beatstep,
bars_per_batch=n_bars,
cutoff_time_idx=(n_bars + 1) * 4,
)
return relative_tokens, notes, pm
def prepare_inference_mel(
self, audio, beatstep, n_bars, padding_value, composer_value=None
):
n_steps = n_bars * 4
n_target_step = len(beatstep)
sample_rate = self.config.dataset.sample_rate
ext_beatstep = extrapolate_beat_times(beatstep, (n_bars + 1) * 4 + 1)
def split_audio(audio):
# Split audio corresponding beat intervals.
# Each audio's lengths are different.
# Because each corresponding beat interval times are different.
batch = []
for i in range(0, n_target_step, n_steps):
start_idx = i
end_idx = min(i + n_steps, n_target_step)
start_sample = int(ext_beatstep[start_idx] * sample_rate)
end_sample = int(ext_beatstep[end_idx] * sample_rate)
feature = audio[start_sample:end_sample]
batch.append(feature)
return batch
def pad_and_stack_batch(batch):
batch = pad_sequence(batch, batch_first=True, padding_value=padding_value)
return batch
batch = split_audio(audio)
batch = pad_and_stack_batch(batch)
inputs_embeds = self.spectrogram(batch).transpose(-1, -2)
if self.mel_is_conditioned:
composer_value = torch.tensor(composer_value).to(self.device)
composer_value = composer_value.repeat(inputs_embeds.shape[0])
inputs_embeds = self.mel_conditioner(inputs_embeds, composer_value)
return inputs_embeds, ext_beatstep
@torch.no_grad()
def generate(
self,
audio_path=None,
composer=None,
model="generated",
steps_per_beat=2,
stereo_amp=0.5,
n_bars=2,
ignore_duplicate=True,
show_plot=False,
save_midi=False,
save_mix=False,
midi_path=None,
mix_path=None,
click_amp=0.2,
add_click=False,
max_batch_size=None,
beatsteps=None,
mix_sample_rate=None,
audio_y=None,
audio_sr=None,
):
config = self.config
device = self.device
if audio_path is not None:
extension = os.path.splitext(audio_path)[1]
mix_path = (
audio_path.replace(extension, f".{model}.{composer}.wav")
if mix_path is None
else mix_path
)
midi_path = (
audio_path.replace(extension, f".{model}.{composer}.mid")
if midi_path is None
else midi_path
)
max_batch_size = 64 // n_bars if max_batch_size is None else max_batch_size
composer_to_feature_token = self.composer_to_feature_token
if composer is None:
composer = random.sample(list(composer_to_feature_token.keys()), 1)[0]
composer_value = composer_to_feature_token[composer]
mix_sample_rate = (
config.dataset.sample_rate if mix_sample_rate is None else mix_sample_rate
)
if not ignore_duplicate:
if os.path.exists(midi_path):
return
ESSENTIA_SAMPLERATE = 44100
if beatsteps is None:
y, sr = librosa.load(audio_path, sr=ESSENTIA_SAMPLERATE)
(
bpm,
beat_times,
confidence,
estimates,
essentia_beat_intervals,
) = extract_rhythm(audio_path, y=y)
beat_times = np.array(beat_times)
beatsteps = interpolate_beat_times(beat_times, steps_per_beat, extend=True)
else:
y = None
if self.use_mel:
if audio_y is None and config.dataset.sample_rate != ESSENTIA_SAMPLERATE:
if y is not None:
y = librosa.core.resample(
y,
orig_sr=ESSENTIA_SAMPLERATE,
target_sr=config.dataset.sample_rate,
)
sr = config.dataset.sample_rate
else:
y, sr = librosa.load(audio_path, sr=config.dataset.sample_rate)
elif audio_y is not None:
if audio_sr != config.dataset.sample_rate:
audio_y = librosa.core.resample(
audio_y, orig_sr=audio_sr, target_sr=config.dataset.sample_rate
)
audio_sr = config.dataset.sample_rate
y = audio_y
sr = audio_sr
start_sample = int(beatsteps[0] * sr)
end_sample = int(beatsteps[-1] * sr)
_audio = torch.from_numpy(y)[start_sample:end_sample].to(device)
fzs = None
else:
raise NotImplementedError
relative_tokens, notes, pm = self.single_inference(
feature_tokens=fzs,
audio=_audio,
beatstep=beatsteps - beatsteps[0],
max_length=config.dataset.target_length
* max(1, (n_bars // config.dataset.n_bars)),
max_batch_size=max_batch_size,
n_bars=n_bars,
composer_value=composer_value,
)
for n in pm.instruments[0].notes:
n.start += beatsteps[0]
n.end += beatsteps[0]
if show_plot or save_mix:
if mix_sample_rate != sr:
y = librosa.core.resample(y, orig_sr=sr, target_sr=mix_sample_rate)
sr = mix_sample_rate
if add_click:
clicks = (
librosa.clicks(times=beatsteps, sr=sr, length=len(y)) * click_amp
)
y = y + clicks
pm_y = pm.fluidsynth(sr)
stereo = get_stereo(y, pm_y, pop_scale=stereo_amp)
if show_plot:
import IPython.display as ipd
from IPython.display import display
import note_seq
display("Stereo MIX", ipd.Audio(stereo, rate=sr))
display("Rendered MIDI", ipd.Audio(pm_y, rate=sr))
display("Original Song", ipd.Audio(y, rate=sr))
display(note_seq.plot_sequence(note_seq.midi_to_note_sequence(pm)))
if save_mix:
sf.write(
file=mix_path,
data=stereo.T,
samplerate=sr,
format="wav",
)
if save_midi:
pm.write(midi_path)
return pm, composer, mix_path, midi_path