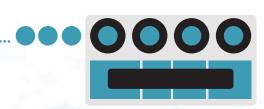
If your research is being slowed down by having to wait long times for the computational portion, could one of the following apply to you?

TOO MUCH DATA

Is the data on which you are operating larger than your computer's memory?

e.g. 20Gb data set on 8Gb computer memory

TOO MANY PROCESSES


Are you running the same process on many data objects, or many processing stages on the same data object?

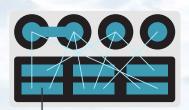
e.g. many stages of image processing and/or many images

TOO MUCH EVERYTHING

Do you have both too much data and too many processes/stages?

e.g. both of the above

READY TO SCALE UP


Is your code very complex, but (potentially) written to automatically scale to more processors?

e.g. written with SciPy, NumPy, Julia, Matlab, R, Fortran, C...

HERE, THERE AND EVERYWHERE

Does your complex code require many different pieces of data at the same time?

e.g. simulation with boundary conditions

accessing disparate data in computer memory

STILL NOT SURE?

A simple place to start is to ask, Is your application using most or all of your computer's memory and/or processors?

If so, it is likely this workshop-hackathon could help you speed up the computational component of your research, using language and terminology you understand.

Polar Worshop-Hackathon

1-4 August 2017 Stony Brook NY