You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
"Each of the xxply functions (`daply`, `ddply`, `llply`, `laply`, ...) has the\n"
"same structure and has 4 key features and structure:"
msgstr""
"Each of the xxply functions (`daply`, `ddply`, `llply`, `laply`, ...) has the\n"
"same structure and has 4 key features and structure:"
# code block
#:r-novice-gapminder/_episodes/12-plyr.md:151
msgid""
"~~~\n"
"xxply(.data, .variables, .fun)\n"
"~~~"
msgstr""
"~~~\n"
"xxply(.data, .variables, .fun)\n"
"~~~"
# unordered list
#:r-novice-gapminder/_episodes/12-plyr.md:156
msgid"* The first letter of the function name gives the input type and the second gives the output type."
msgstr"* The first letter of the function name gives the input type and the second gives the output type."
# unordered list
#:r-novice-gapminder/_episodes/12-plyr.md:157
msgid"* .data - gives the data object to be processed"
msgstr"* .data - gives the data object to be processed"
# unordered list
#:r-novice-gapminder/_episodes/12-plyr.md:158
msgid"* .variables - identifies the splitting variables"
msgstr"* .variables - identifies the splitting variables"
# unordered list
#:r-novice-gapminder/_episodes/12-plyr.md:159
msgid"* .fun - gives the function to be called on each piece"
msgstr"* .fun - gives the function to be called on each piece"
#:r-novice-gapminder/_episodes/12-plyr.md:161
msgid"Now we can quickly calculate the mean GDP per continent:"
msgstr"Now we can quickly calculate the mean GDP per continent:"
# code block
#:r-novice-gapminder/_episodes/12-plyr.md:164
msgid""
"~~~\n"
"ddply(\n"
" .data = calcGDP(gapminder),\n"
" .variables = \"continent\",\n"
" .fun = function(x) mean(x$gdp)\n"
")\n"
"~~~"
msgstr""
"~~~\n"
"ddply(\n"
" .data = calcGDP(gapminder),\n"
" .variables = \"continent\",\n"
" .fun = function(x) mean(x$gdp)\n"
")\n"
"~~~"
# code block
#:r-novice-gapminder/_episodes/12-plyr.md:175
msgid""
"~~~\n"
" continent V1\n"
"1 Africa 20904782844\n"
"2 Americas 379262350210\n"
"3 Asia 227233738153\n"
"4 Europe 269442085301\n"
"5 Oceania 188187105354\n"
"~~~"
msgstr""
"~~~\n"
" continent V1\n"
"1 Africa 20904782844\n"
"2 Americas 379262350210\n"
"3 Asia 227233738153\n"
"4 Europe 269442085301\n"
"5 Oceania 188187105354\n"
"~~~"
#:r-novice-gapminder/_episodes/12-plyr.md:185
msgid"Let's walk through the previous code:"
msgstr"Let's walk through the previous code:"
# unordered list
#:r-novice-gapminder/_episodes/12-plyr.md:187
msgid"- The `ddply` function feeds in a `data.frame` (function starts with **d**) and"
msgstr"- The `ddply` function feeds in a `data.frame` (function starts with **d**) and"
#:r-novice-gapminder/_episodes/12-plyr.md:188
msgid""
"returns another `data.frame` (2nd letter is a **d**) i\n"
"- the first argument we gave was the data.frame we wanted to operate on: in this\n"
" case the gapminder data. We called `calcGDP` on it first so that it would have\n"
" the additional `gdp` column added to it.\n"
"- The second argument indicated our split criteria: in this case the \"continent\"\n"
" column. Note that we gave the name of the column, not the values of the column like we had done previously with subsetting. Plyr takes care of these\n"
" implementation details for you.\n"
"- The third argument is the function we want to apply to each grouping of the\n"
" data. We had to define our own short function here: each subset of the data\n"
" gets stored in `x`, the first argument of our function. This is an anonymous\n"
" function: we haven't defined it elsewhere, and it has no name. It only exists\n"
" in the scope of our call to `ddply`."
msgstr""
"returns another `data.frame` (2nd letter is a **d**) i\n"
"- the first argument we gave was the data.frame we wanted to operate on: in this\n"
" case the gapminder data. We called `calcGDP` on it first so that it would have\n"
" the additional `gdp` column added to it.\n"
"- The second argument indicated our split criteria: in this case the \"continent\"\n"
" column. Note that we gave the name of the column, not the values of the column like we had done previously with subsetting. Plyr takes care of these\n"
" implementation details for you.\n"
"- The third argument is the function we want to apply to each grouping of the\n"
" data. We had to define our own short function here: each subset of the data\n"
" gets stored in `x`, the first argument of our function. This is an anonymous\n"
" function: we haven't defined it elsewhere, and it has no name. It only exists\n"
" in the scope of our call to `ddply`."
#:r-novice-gapminder/_episodes/12-plyr.md:202
msgid""
">\n"
"> Calculate the average life expectancy per continent. Which has the longest?\n"
"> Which had the shortest?"
msgstr""
">\n"
"> Calculate the average life expectancy per continent. Which has the longest?\n"
"> Which had the shortest?"
#:r-novice-gapminder/_episodes/12-plyr.md:207
msgid"What if we want a different type of output data structure?:"
msgstr"What if we want a different type of output data structure?:"
# code block
#:r-novice-gapminder/_episodes/12-plyr.md:210
msgid""
"~~~\n"
"dlply(\n"
" .data = calcGDP(gapminder),\n"
" .variables = \"continent\",\n"
" .fun = function(x) mean(x$gdp)\n"
")\n"
"~~~"
msgstr""
"~~~\n"
"dlply(\n"
" .data = calcGDP(gapminder),\n"
" .variables = \"continent\",\n"
" .fun = function(x) mean(x$gdp)\n"
")\n"
"~~~"
# code block
#:r-novice-gapminder/_episodes/12-plyr.md:221
msgid""
"~~~\n"
"$Africa\n"
"[1] 20904782844\n"
"\n"
"$Americas\n"
"[1] 379262350210\n"
"\n"
"$Asia\n"
"[1] 227233738153\n"
"\n"
"$Europe\n"
"[1] 269442085301\n"
"\n"
"$Oceania\n"
"[1] 188187105354\n"
"\n"
"attr(,\"split_type\")\n"
"[1] \"data.frame\"\n"
"attr(,\"split_labels\")\n"
" continent\n"
"1 Africa\n"
"2 Americas\n"
"3 Asia\n"
"4 Europe\n"
"5 Oceania\n"
"~~~"
msgstr""
"~~~\n"
"$Africa\n"
"[1] 20904782844\n"
"\n"
"$Americas\n"
"[1] 379262350210\n"
"\n"
"$Asia\n"
"[1] 227233738153\n"
"\n"
"$Europe\n"
"[1] 269442085301\n"
"\n"
"$Oceania\n"
"[1] 188187105354\n"
"\n"
"attr(,\"split_type\")\n"
"[1] \"data.frame\"\n"
"attr(,\"split_labels\")\n"
" continent\n"
"1 Africa\n"
"2 Americas\n"
"3 Asia\n"
"4 Europe\n"
"5 Oceania\n"
"~~~"
#:r-novice-gapminder/_episodes/12-plyr.md:249
msgid""
"We called the same function again, but changed the second letter to an `l`, so\n"
"the output was returned as a list."
msgstr""
"We called the same function again, but changed the second letter to an `l`, so\n"
"the output was returned as a list."
#:r-novice-gapminder/_episodes/12-plyr.md:252
msgid"We can specify multiple columns to group by:"
msgstr"We can specify multiple columns to group by:"
# code block
#:r-novice-gapminder/_episodes/12-plyr.md:255
msgid""
"~~~\n"
"ddply(\n"
" .data = calcGDP(gapminder),\n"
" .variables = c(\"continent\", \"year\"),\n"
" .fun = function(x) mean(x$gdp)\n"
")\n"
"~~~"
msgstr""
"~~~\n"
"ddply(\n"
" .data = calcGDP(gapminder),\n"
" .variables = c(\"continent\", \"year\"),\n"
" .fun = function(x) mean(x$gdp)\n"
")\n"
"~~~"
# code block
#:r-novice-gapminder/_episodes/12-plyr.md:266
msgid""
"~~~\n"
" continent year V1\n"
"1 Africa 1952 5992294608\n"
"2 Africa 1957 7359188796\n"
"3 Africa 1962 8784876958\n"
"4 Africa 1967 11443994101\n"
"5 Africa 1972 15072241974\n"
"6 Africa 1977 18694898732\n"
"7 Africa 1982 22040401045\n"
"8 Africa 1987 24107264108\n"
"9 Africa 1992 26256977719\n"
"10 Africa 1997 30023173824\n"
"11 Africa 2002 35303511424\n"
"12 Africa 2007 45778570846\n"
"13 Americas 1952 117738997171\n"
"14 Americas 1957 140817061264\n"
"15 Americas 1962 169153069442\n"
"16 Americas 1967 217867530844\n"
"17 Americas 1972 268159178814\n"
"18 Americas 1977 324085389022\n"
"19 Americas 1982 363314008350\n"
"20 Americas 1987 439447790357\n"
"21 Americas 1992 489899820623\n"
"22 Americas 1997 582693307146\n"
"23 Americas 2002 661248623419\n"
"24 Americas 2007 776723426068\n"
"25 Asia 1952 34095762661\n"
"26 Asia 1957 47267432088\n"
"27 Asia 1962 60136869012\n"
"28 Asia 1967 84648519224\n"
"29 Asia 1972 124385747313\n"
"30 Asia 1977 159802590186\n"
"31 Asia 1982 194429049919\n"
"32 Asia 1987 241784763369\n"
"33 Asia 1992 307100497486\n"
"34 Asia 1997 387597655323\n"
"35 Asia 2002 458042336179\n"
"36 Asia 2007 627513635079\n"
"37 Europe 1952 84971341466\n"
"38 Europe 1957 109989505140\n"
"39 Europe 1962 138984693095\n"
"40 Europe 1967 173366641137\n"
"41 Europe 1972 218691462733\n"
"42 Europe 1977 255367522034\n"
"43 Europe 1982 279484077072\n"
"44 Europe 1987 316507473546\n"
"45 Europe 1992 342703247405\n"
"46 Europe 1997 383606933833\n"
"47 Europe 2002 436448815097\n"
"48 Europe 2007 493183311052\n"
"49 Oceania 1952 54157223944\n"
"50 Oceania 1957 66826828013\n"
"51 Oceania 1962 82336453245\n"
"52 Oceania 1967 105958863585\n"
"53 Oceania 1972 134112109227\n"
"54 Oceania 1977 154707711162\n"
"55 Oceania 1982 176177151380\n"
"56 Oceania 1987 209451563998\n"
"57 Oceania 1992 236319179826\n"
"58 Oceania 1997 289304255183\n"
"59 Oceania 2002 345236880176\n"
"60 Oceania 2007 403657044512\n"
"~~~"
msgstr""
"~~~\n"
" continent year V1\n"
"1 Africa 1952 5992294608\n"
"2 Africa 1957 7359188796\n"
"3 Africa 1962 8784876958\n"
"4 Africa 1967 11443994101\n"
"5 Africa 1972 15072241974\n"
"6 Africa 1977 18694898732\n"
"7 Africa 1982 22040401045\n"
"8 Africa 1987 24107264108\n"
"9 Africa 1992 26256977719\n"
"10 Africa 1997 30023173824\n"
"11 Africa 2002 35303511424\n"
"12 Africa 2007 45778570846\n"
"13 Americas 1952 117738997171\n"
"14 Americas 1957 140817061264\n"
"15 Americas 1962 169153069442\n"
"16 Americas 1967 217867530844\n"
"17 Americas 1972 268159178814\n"
"18 Americas 1977 324085389022\n"
"19 Americas 1982 363314008350\n"
"20 Americas 1987 439447790357\n"
"21 Americas 1992 489899820623\n"
"22 Americas 1997 582693307146\n"
"23 Americas 2002 661248623419\n"
"24 Americas 2007 776723426068\n"
"25 Asia 1952 34095762661\n"
"26 Asia 1957 47267432088\n"
"27 Asia 1962 60136869012\n"
"28 Asia 1967 84648519224\n"
"29 Asia 1972 124385747313\n"
"30 Asia 1977 159802590186\n"
"31 Asia 1982 194429049919\n"
"32 Asia 1987 241784763369\n"
"33 Asia 1992 307100497486\n"
"34 Asia 1997 387597655323\n"
"35 Asia 2002 458042336179\n"
"36 Asia 2007 627513635079\n"
"37 Europe 1952 84971341466\n"
"38 Europe 1957 109989505140\n"
"39 Europe 1962 138984693095\n"
"40 Europe 1967 173366641137\n"
"41 Europe 1972 218691462733\n"
"42 Europe 1977 255367522034\n"
"43 Europe 1982 279484077072\n"
"44 Europe 1987 316507473546\n"
"45 Europe 1992 342703247405\n"
"46 Europe 1997 383606933833\n"
"47 Europe 2002 436448815097\n"
"48 Europe 2007 493183311052\n"
"49 Oceania 1952 54157223944\n"
"50 Oceania 1957 66826828013\n"
"51 Oceania 1962 82336453245\n"
"52 Oceania 1967 105958863585\n"
"53 Oceania 1972 134112109227\n"
"54 Oceania 1977 154707711162\n"
"55 Oceania 1982 176177151380\n"
"56 Oceania 1987 209451563998\n"
"57 Oceania 1992 236319179826\n"
"58 Oceania 1997 289304255183\n"
"59 Oceania 2002 345236880176\n"
"60 Oceania 2007 403657044512\n"
"~~~"
# code block
#:r-novice-gapminder/_episodes/12-plyr.md:332
msgid""
"~~~\n"
"daply(\n"
" .data = calcGDP(gapminder),\n"
" .variables = c(\"continent\", \"year\"),\n"
" .fun = function(x) mean(x$gdp)\n"
")\n"
"~~~"
msgstr""
"~~~\n"
"daply(\n"
" .data = calcGDP(gapminder),\n"
" .variables = c(\"continent\", \"year\"),\n"
" .fun = function(x) mean(x$gdp)\n"
")\n"
"~~~"
# code block
#:r-novice-gapminder/_episodes/12-plyr.md:343
msgid""
"~~~\n"
" year\n"
"continent 1952 1957 1962 1967\n"
" Africa 5992294608 7359188796 8784876958 11443994101\n"
Translation of section 12 on
plyr
(lines 16013 to 16938)セクション12
plyr
の翻訳 (16013 から 16938 まで)i18n/po/r-novice-gapminder.ja.po
Lines 16013 to 16938 in 5f1d2d1
The text was updated successfully, but these errors were encountered: