forked from cfoh/Multi-Armed-Bandit-Example
-
Notifications
You must be signed in to change notification settings - Fork 0
/
example-ucb.py
261 lines (219 loc) · 8.95 KB
/
example-ucb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
'''
Upper Confidence Bound (UCB) Algorithm.
'''
from math import ceil
import random
import time
import matplotlib.pyplot as plt
from mab import UCB1
from mab import ExplorationFirst, EpsilonGreedy, EpsilonDecreasing
######################################################################
## User behaviour matrix for the environment (static class)
######################################################################
class Ad:
Type = {
# arm expected reward
# ------------------------
"toys" : 0.10,
"cars" : 0.30,
"sports" : 0.40,
"holidays" : 0.35,
"foods" : 0.25
}
AllArms = list(Type.keys()) # list of all ad types
######################################################################
## Theoretical result calculator (static class)
######################################################################
class Theoretical:
regret_series = [] # store the regret series
@staticmethod
def expected_click_rate(arm) -> float:
'''This is commonly notated as $\mu(a)$.'''
return Ad.Type[arm]
@staticmethod
def optimal_click_rate() -> float:
'''This is commonly notated as $\mu^*$, which is
$\max_{a\in A} \mu(a)$
'''
return max([mu_a for mu_a in list(Ad.Type.values())])
@staticmethod
def regret(t) -> float:
'''This is commonly notated as $R(T)$, which is the regret
at round $T$. It is calculated by
$R(T) = T \mu^* - \sum_{t=1}^T \mu(a_t)$
where $a_t$ is the arm selection history.
'''
optimal = Theoretical.optimal_click_rate() * t # optimal click rate
experienced = 0 # experienced click rate
for arm in Ad.AllArms:
experienced += Theoretical.expected_click_rate(arm) * Empirical.get_arm_count(arm)
regret_at_t = optimal - experienced
Theoretical.regret_series.append(regret_at_t)
return regret_at_t
@staticmethod
def get_regret_series():
return Theoretical.regret_series
######################################################################
## Historical result keeper (static class)
######################################################################
class Empirical:
click_selections = [] # store the history of click selections
click_outcomes = [] # store the history of click outcomes
count_selection = {} # store the total count of each arm selection
@staticmethod
def report(arm,outcome):
Empirical.click_outcomes.append(outcome)
Empirical.click_selections.append(arm)
if arm not in Empirical.count_selection:
Empirical.count_selection[arm] = 0
else:
Empirical.count_selection[arm] += 1
@staticmethod
def get_arm_count(arm):
if arm not in Empirical.count_selection:
return 0
return Empirical.count_selection[arm]
@staticmethod
def get_click_rate():
return sum(Empirical.click_outcomes)/len(Empirical.click_outcomes)
@staticmethod
def get_click_rate_series():
click_rate_series = []
click_rate_total = 0
click_rate_size = 0
for click in Empirical.click_outcomes:
click_rate_total += 1 if click else 0
click_rate_size += 1
click_rate_series.append(click_rate_total/click_rate_size)
return click_rate_series
@staticmethod
def get_arm_selection_series():
arm_selection_series = {}
for arm in Ad.AllArms:
arm_selection_series[arm] = [0]
for selected_arm in Empirical.click_selections:
for arm in Ad.AllArms:
if arm==selected_arm:
arm_selection_series[arm].append(arm_selection_series[arm][-1]+1)
else:
arm_selection_series[arm].append(arm_selection_series[arm][-1])
for arm in Ad.AllArms:
arm_selection_series[arm] = arm_selection_series[arm][1:]
return arm_selection_series
######################################################################
## Client profile
######################################################################
class Client:
def will_click(self, ad) -> bool:
'''Will this client clicks this advert?'''
click_prob = random.randint(0,99)
if click_prob<100*Ad.Type[ad]:
return True
return False
####################################################################
## main loop
####################################################################
if __name__ == "__main__":
## setup environment parameters
num_users = 2000 # number of users to visit the website
num_clicks = 0 # number of clicks collected
animation = True # True/False
## setup MAB (pick one)
mab = UCB1() # UCB agent
## setup exploration-exploitation strategy (pick one)
strategy = EpsilonGreedy(0.15)
#strategy = EpsilonDecreasing(-0.5)
#strategy = EpsilonGreedy(1.0) # set to 1.0 for 100% exploration
#strategy = ExplorationFirst(0.2*num_users) # 20% exploration first
#strategy = ExplorationFirst(0.02*num_users) # 2% exploration first
## ready-set-go
print("\n")
spinner = ["\u2212","\\","|","/","\u2212","\\","|","/"]
for i in range(40,0,-1):
print(f"\033[KRunning in ...{ceil(i/10)} {spinner[i%len(spinner)]}")
print("\033[2A")
time.sleep(0.1*animation)
print(f"\033[K")
## print heading for the animation
last_ucb = {}
for ad_type in Ad.AllArms: last_ucb[ad_type] = 0
print(f"Testing {mab.description()}\n")
print(" Ad Average UCB Ad shown")
print("type reward radius to users")
print("--------------------------------")
## this is the main loop
## the objective of ML agent is to achieve
## as many clicks as possible through learning
for round in range(1,num_users+1):
## a user has visited the website
user = Client()
## prepare an advertisement
## ..either by exploration
if strategy.is_exploration(round):
offered_ad = random.choices(Ad.AllArms)[0]
## ..or by exploitation
else:
(offered_ad,reward) = mab.get_best_arm()
if offered_ad is None: # no info about this arm yet?
offered_ad = random.choices(Ad.AllArms)[0]
## will the user click?
if user.will_click(offered_ad):
click_reward = 1
num_clicks += 1
else:
click_reward = 0
Empirical.report(offered_ad, click_reward)
mab.update_reward(arm=offered_ad, reward=click_reward)
last_ucb[offered_ad] = mab.get_last_ucb()
## show animation
for arm in Ad.AllArms:
r = mab.get_reward(arm)
len_count_bar = int(50*Empirical.get_arm_count(arm)/round)
print(f"\033[K> {arm:8s} {r:5.2f} ",end="")
print(f"{last_ucb[arm]:5.2f} ",end="")
print("*" if arm==offered_ad else " ",end="")
print("[%s] %d"%("="*len_count_bar,Empirical.get_arm_count(arm)))
current_click_rate = Empirical.get_click_rate()
current_regret = Theoretical.regret(round)
print(f"\nClick rate = {current_click_rate:5.2f}")
print(f"Regret = {current_regret:5.2f}")
print("\033[9A")
time.sleep(0.05*animation if round<1000 else 0.01*animation)
## show outcome
average_click_rate = num_clicks/num_users
best_click_rate = Theoretical.optimal_click_rate()
print("%s"%"\n"*8)
print(f"Strategy: {strategy.description()}")
print(f"Number of users = {num_users}")
print(f"Number of clicks = {num_clicks}")
print(f"Click rate = {100*average_click_rate:1.2f}%")
print(f"Theoretical best click rate = {100*best_click_rate:4.2f}%")
## plot the click rate & regret
plt.figure(1)
click_series = Empirical.get_click_rate_series()
plt.plot(range(len(click_series)), click_series, '-')
plt.xlabel("Number of ads offered")
plt.ylabel("Click Rate")
plt.figure(2)
regret_series = Theoretical.get_regret_series()
plt.plot(range(len(regret_series)), regret_series, '-')
plt.xlabel("Number of ads offered")
plt.ylabel("Regret")
## plot the arm selections
plt.figure(3)
arm_selection_series = Empirical.get_arm_selection_series()
ad_type = Ad.AllArms.copy()
ad_color = {0:"green",1:"blue",2:"pink",3:"yellow",4:"red"}
for i in ad_color:
plt.plot([],[],color=ad_color[i], label=ad_type[i], linewidth=5)
plt.stackplot(range(len(arm_selection_series[ad_type[0]])),
arm_selection_series[ad_type[0]],
arm_selection_series[ad_type[1]],
arm_selection_series[ad_type[2]],
arm_selection_series[ad_type[3]],
arm_selection_series[ad_type[4]],
colors=list(ad_color.values()))
plt.xlabel("Number of ads offered")
plt.ylabel('Number shown')
plt.legend(loc="upper left")
plt.show()