-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_KITTI_r.py
282 lines (227 loc) · 10.5 KB
/
train_KITTI_r.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
"""
References:
PointPWC-Net: https://github.com/DylanWusee/PointPWC
HPLFlowNet: https://github.com/laoreja/HPLFlowNet
RigidFlow: https://github.com/L1bra1/RigidFlow
"""
import argparse
import sys
import os
import torch, numpy as np, glob, math, torch.utils.data, scipy.ndimage, multiprocessing as mp
import torch.nn.functional as F
import time
import pickle
import datetime
import logging
from tqdm import tqdm
from model import SPFlowNet
# from model_v2 import SPFlowNet
from pathlib import Path
from collections import defaultdict
from evaluation_utils import evaluate_2d, evaluate_3d
import datasets
import cmd_args
from main_utils import *
from losses.unsupervised_losses import UnSupervisedL1Loss
losses_dict = {
'unsup_l1': UnSupervisedL1Loss
}
def sequence_loss(pos1, pos2, flows_pred, flow_gt, hparams, loss_func):
if 'loss_iters_w' in hparams:
assert (len(hparams['loss_iters_w']) == len(flows_pred))
loss = torch.zeros(1).cuda()
for i, w in enumerate(hparams['loss_iters_w']):
loss += w * loss_func(pos1, pos2, flows_pred[i], flow_gt, i)
else:
loss = loss_func(pos1, pos2, flows_pred[-1], flow_gt)
return loss
def main():
if 'NUMBA_DISABLE_JIT' in os.environ:
del os.environ['NUMBA_DISABLE_JIT']
global args
args = cmd_args.parse_args_from_yaml(sys.argv[1])
torch.backends.cudnn.deterministic = True
torch.manual_seed(args.exp_params['seed'])
torch.cuda.manual_seed_all(args.exp_params['seed'])
np.random.seed(args.exp_params['seed'])
os.environ['CUDA_VISIBLE_DEVICES'] = args.exp_params['gpu'] if args.exp_params['multi_gpu'] is None else "0,1"
# Creating Dir
experiment_dir = Path('./experiment_occ/')
experiment_dir.mkdir(exist_ok=True)
file_dir = Path(str(experiment_dir) + '/%s-KITTI_r-'%args.exp_params['model_name'] + str(datetime.datetime.now().strftime('%Y-%m-%d_%H-%M')))
file_dir.mkdir(exist_ok=True)
print(file_dir)
checkpoints_dir = file_dir.joinpath('checkpoints/')
checkpoints_dir.mkdir(exist_ok=True)
saved_dir = file_dir.joinpath('models/')
saved_dir.mkdir(exist_ok=True)
os.system('cp %s %s' % ('model_v2.py', saved_dir))
# os.system('cp %s %s' % ('model.py', saved_dir))
os.system('cp %s %s' % ('train_KITTI_r.py', saved_dir))
os.system('cp %s %s' % ('./configs_with_occlusions/config_evaluate_occ.yaml', saved_dir))
os.system('cp %s %s' % ('./configs_with_occlusions/config_train_KITTI_r.yaml', saved_dir))
os.system('cp %s %s' % ('./utils/pointconv_util.py', saved_dir))
os.system('cp %s %s' % ('./utils/modules.py', saved_dir))
os.system('cp %s %s' % ('./losses/unsupervised_losses.py', saved_dir))
'''LOG'''
logger = logging.getLogger(args.exp_params['model_name'])
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
log_dir = file_dir.joinpath('logs/')
log_dir.mkdir(exist_ok=True)
file_handler = logging.FileHandler(str(log_dir) + '/train_%s_sceneflow.txt'%args.exp_params['model_name'])
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.info('----------------------------------------TRAINING----------------------------------')
logger.info('PARAMETER ...')
logger.info(args)
# blue = lambda x: '\033[94m' + x + '\033[0m'
model = SPFlowNet(args)
loss_func = losses_dict[args.exp_params['loss']['loss_type']](**args.exp_params['loss'])
train_dataset = datasets.__dict__[args.dataset](
train=True,
num_points=args.num_points,
data_root = args.data_root,
)
logger.info('train_dataset: ' + str(train_dataset))
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.exp_params['batch_size'],
shuffle=True,
)
val_dataset = datasets.__dict__[args.dataset](
train=False,
num_points=args.num_points,
data_root = args.data_root
)
logger.info('val_dataset: ' + str(val_dataset))
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=args.exp_params['val_batch_size'],
shuffle=False,
)
'''GPU selection and multi-GPU'''
if args.exp_params['multi_gpu'] is not None:
device_ids = [int(x) for x in args.exp_params['multi_gpu'].split(',')]
torch.backends.cudnn.benchmark = True
model.cuda(device_ids[0])
model = torch.nn.DataParallel(model, device_ids = device_ids)
else:
model.cuda()
if args.exp_params['pretrain'] is not None:
model.load_state_dict(torch.load(args.exp_params['pretrain']))
print('load model %s'%args.exp_params['pretrain'])
logger.info('load model %s'%args.exp_params['pretrain'])
else:
print('Training from scratch')
logger.info('Training from scratch')
pretrain = args.exp_params['pretrain']
init_epoch = int(pretrain[-14:-11]) if args.exp_params['pretrain'] is not None else 0
print(init_epoch)
if args.exp_params['optimizer'] == 'SGD':
optimizer = torch.optim.SGD(model.parameters(), lr=args.exp_params['learning_rate'], momentum=0.9)
elif args.exp_params['optimizer'] == 'Adam':
optimizer = torch.optim.Adam(model.parameters(), lr=args.exp_params['learning_rate'])
optimizer.param_groups[0]['initial_lr'] = args.exp_params['learning_rate']
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.exp_params['scheduler']['milestones'], gamma=args.exp_params['scheduler']['gamma'])
LEARNING_RATE_CLIP = 1e-5
history = defaultdict(lambda: list())
best_epe = 1000.0
best_acc_3d = -1
for epoch in range(args.exp_params['epochs']):
lr = max(optimizer.param_groups[0]['lr'], LEARNING_RATE_CLIP)
print('Learning rate:%f'%lr)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
total_loss = 0
total_seen = 0
optimizer.zero_grad()
for i, data in tqdm(enumerate(train_loader, 0), total=len(train_loader), smoothing=0.9):
pos1, pos2, norm1, norm2, flow, _, _, _ = data
pos1 = pos1.cuda()
pos2 = pos2.cuda()
norm1 = norm1.cuda()
norm2 = norm2.cuda()
flow = flow.cuda()
# color1 = color1.cuda()
# color2 = color2.cuda()
model = model.train()
pred_flows, loss_consistency = model(pos1, pos2, norm1, norm2)
loss = sequence_loss(pos1, pos2, pred_flows, flow, args.exp_params['loss'], loss_func)
# print(loss, loss_consistency.sum())
loss += loss + 0.01*loss_consistency.sum()
history['loss'].append(loss.cpu().data.numpy())
loss.backward()
optimizer.step()
optimizer.zero_grad()
total_loss += loss.cpu().data * args.exp_params['batch_size']
total_seen += args.exp_params['batch_size']
scheduler.step()
train_loss = total_loss / total_seen
str_out = 'EPOCH %d %s mean loss: %f'%(epoch, 'train', train_loss)
print(str_out)
logger.info(str_out)
logger.info('test of kitti_occ')
eval_epe3d, eval_loss, eval_as = eval_sceneflow(model.eval(), val_loader, logger, loss_func, args)
str_out = 'EPOCH %d %s mean epe3d: %f mean eval loss: %f'%(epoch, 'eval', eval_epe3d, eval_loss)
print(str_out)
logger.info(str_out)
if (eval_epe3d < best_epe) or (eval_as > best_acc_3d):
# best_epe = eval_epe3d
best_epe = eval_epe3d if eval_epe3d < best_epe else best_epe
best_acc_3d = eval_as if eval_as > best_acc_3d else best_acc_3d
torch.save(optimizer.state_dict(), '%s/optimizer.pth'%(checkpoints_dir))
if args.exp_params['multi_gpu'] is not None:
torch.save(model.module.state_dict(), '%s/%s_%.3d_%.4f.pth'%(checkpoints_dir, args.exp_params['model_name'], epoch, best_epe))
else:
torch.save(model.state_dict(), '%s/%s_%.3d_%.4f.pth'%(checkpoints_dir, args.exp_params['model_name'], epoch, best_epe))
logger.info('Save model ...')
print('Save model ...')
print('Best epe loss is: %.5f'%(best_epe))
logger.info('Best epe loss is: %.5f'%(best_epe))
def eval_sceneflow(model, loader, logger, loss_func, args):
epe3ds = AverageMeter()
acc3d_stricts = AverageMeter()
acc3d_relaxs = AverageMeter()
outliers = AverageMeter()
metrics = defaultdict(lambda:list())
for batch_id, data in tqdm(enumerate(loader), total=len(loader), smoothing=0.9):
pos1, pos2, norm1, norm2, flow, _, _, _ = data
#move to cuda
pos1 = pos1.cuda()
pos2 = pos2.cuda()
norm1 = norm1.cuda()
norm2 = norm2.cuda()
flow = flow.cuda()
with torch.no_grad():
pred_flows, loss = model(pos1, pos2, norm1, norm2)
eval_loss = sequence_loss(pos1, pos2, pred_flows, flow, args.exp_params['loss'], loss_func)
eval_loss += eval_loss + 0.01*loss.sum()
epe3d = torch.norm(pred_flows[-1] - flow, dim = 2).mean()
EPE3D, acc3d_strict, acc3d_relax, outlier = evaluate_3d(pred_flows[-1].cpu().numpy(), flow.cpu().numpy())
epe3ds.update(EPE3D)
acc3d_stricts.update(acc3d_strict)
acc3d_relaxs.update(acc3d_relax)
outliers.update(outlier)
metrics['epe3d_loss'].append(epe3d.cpu().data.numpy())
metrics['eval_loss'].append(eval_loss.cpu().data.numpy())
metrics['acc_3d'].append(acc3d_strict)
mean_epe3d = np.mean(metrics['epe3d_loss'])
mean_eval = np.mean(metrics['eval_loss'])
mean_as = np.mean(metrics['acc_3d'])
res_str = (' * EPE3D {epe3d_.avg:.4f}\t'
'ACC3DS {acc3d_s.avg:.4f}\t'
'ACC3DR {acc3d_r.avg:.4f}\t'
'Outliers3D {outlier_.avg:.4f}'
.format(
epe3d_=epe3ds,
acc3d_s=acc3d_stricts,
acc3d_r=acc3d_relaxs,
outlier_=outliers,
))
print(res_str)
logger.info(res_str)
return mean_epe3d, mean_eval, mean_as
if __name__ == '__main__':
main()