-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnewton_ADMM_Hk.m
125 lines (61 loc) · 2.79 KB
/
newton_ADMM_Hk.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
function [obj_GD, loss_GD,transmitted_bits]=newton_ADMM_Hk...
(XX,YY, no_workers, num_feature, noSamples, num_iter, obj0, lambda_logistic, rho, alpha)
s1=num_feature;
s2=noSamples;
%rho=500;
%alpha = 0;
%rho=1E-3;
grads=ones(num_feature,no_workers);
hessian = zeros(num_feature,num_feature, no_workers);
w_central = zeros(num_feature,1);
w=zeros(num_feature,no_workers);
lambda=zeros(num_feature,no_workers);
out_central=zeros(s1,1);
R=1;
max_iter = num_iter;
for i = 1:max_iter
% if i==1
% transmitted_bits(i)=num_feature*32;
% else
% transmitted_bits(i)=transmitted_bits(i-1)+num_feature*32;
% end
transmitted_bits(i) = i*R*num_feature*32;
for ii =1:no_workers
first = (ii-1)*s2+1;
last = first+s2-1;
%grads(:,ii)=XX(first:last,1:num_feature)'*XX(first:last,1:num_feature)*out_central-XX(first:last,1:num_feature)'*YY(first:last);
grads(:,ii)=-(XX(first:last,1:num_feature)'*(YY(first:last)./(1+exp(YY(first:last).*(XX(first:last,1:num_feature)*out_central)))))+lambda_logistic*out_central;
%if (i==1)
%hessian(:,:,ii)= XX(first:last,1:num_feature)'*XX(first:last,1:num_feature);
temp = (lambda_logistic + alpha)*eye(num_feature,num_feature);
for jj=first:last
temp=temp+YY(jj)^2*XX(jj,:)'*XX(jj,:)*(exp(YY(jj)*XX(jj,:)*out_central)/(1+exp(YY(jj)*XX(jj,:)*out_central))^2);
end
hessian(:,:,ii)=temp;
%end
end
for r=1:R
for ii=1:no_workers
%w(:,ii)= (hessian(:,:,ii)+(rho)*eye(num_feature,num_feature))\(grads(:,ii)-lambda(:,ii)+rho*w_central);
w(:,ii)= pinv(hessian(:,:,ii)+(rho)*eye(num_feature,num_feature))*(grads(:,ii)-lambda(:,ii)+rho*w_central);
end
w_central = (rho * sum(w,2)+sum(lambda,2))/(no_workers*rho);
for ii=1:no_workers
lambda(:,ii)=lambda(:,ii)+rho*(w(:,ii)-w_central);
end
end
out_central=out_central-w_central;
%final_obj = 0;
final_obj =lambda_logistic*0.5*norm(out_central)^2;
for ii =1:no_workers
first = (ii-1)*s2+1;
last = first+s2-1;
%final_obj = final_obj + 0.5*norm(XX(first:last,1:s1)*out_central - YY(first:last))^2;
final_obj = final_obj+sum(log(1+exp(-YY(first:last).*(XX(first:last,1:s1)*out_central))));
end
obj_GD(i)=final_obj;
%final_obj
loss_GD(i)=abs(final_obj-obj0);
abs(final_obj-obj0)
end
end