Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

SAFMN_Real 如何训练 #44

Open
wangxinchao-bit opened this issue Apr 20, 2024 · 7 comments
Open

SAFMN_Real 如何训练 #44

wangxinchao-bit opened this issue Apr 20, 2024 · 7 comments

Comments

@wangxinchao-bit
Copy link

您好!对您提供的SAFMN_Realx2.pth在真实图像中的超分表现我们感觉效果很好,但是这个在Set5数据集上的评估PSNR就比较低,
2024-04-20 17:37:07,104 INFO: Loading SAFMN model from D:/pythonSoftware/codes/SAFMN/models_pretrain/SAFMN_L_Real_LSDIR_x2.pth, with param key: [params].
2024-04-20 17:37:07,190 INFO: Model [SRModel] is created.
2024-04-20 17:37:07,191 INFO: Testing Set5...
2024-04-20 17:37:08,370 INFO: Validation Set5
# psnr: 25.5341 Best: 25.5341 @ SAFMN_c36n8_x2 iter
# ssim: 0.8602 Best: 0.8602 @ SAFMN_c36n8_x2 iter
所以i想请教您SAFMN_Real是如何训练的呢? 谢谢!!!

@sunny2109
Copy link
Owner

sunny2109 commented Apr 22, 2024

您好,合成退化数据这里我综合了RealESRGAN跟BSRGAN,训练流程先用L1 + 0.05*FFT Loss预训练再用GAN训练。

@wangxinchao-bit
Copy link
Author

相当于您是基于RealESRGAN 和BSRGAN 构造合成数据,然后在合成数据上训练从而得到SAFMN_Real,是这样理解么?

@sunny2109
Copy link
Owner

相当于您是基于RealESRGAN 和BSRGAN 构造合成数据,然后在合成数据上训练从而得到SAFMN_Real,是这样理解么?

是的

@wangxinchao-bit
Copy link
Author

不好意思,你上面提到,先用L1 + 0.05*FFT Loss预训练,再用GAN训练。 想问下,用GAN是如何训练,得到的不应该是微调的GAN模型(不知道我这样理解对不对?)

@sunny2109
Copy link
Owner

要不我们用邮箱([email protected])私下交流吧

@wangxinchao-bit
Copy link
Author

好的

@EchoXu98
Copy link

EchoXu98 commented Jun 5, 2024

您好,合成退化数据这里我综合了RealESRGAN跟BSRGAN,训练流程先用L1 + 0.05*FFT Loss预训练再用GAN训练。

你好,大佬 ,又来咨询一下里。关于real_SAFMN的训练。我注意到您再用了与Real-ESRGAN相同的训练方式,但是在Real-ESRGAN源码中,两个训练阶段里都使用了MultiStepLR作为学习率调度器,但是在MultiStepLR的具体参数设置时,其中milestones直接等于total_iter(在Real-ESRGAN的两个阶段都是这样设置的),按照MultiStepLR的原理,那么整个训练过程中,学习率都是不变化的,这让我很疑惑。所以想咨询下,在您的训练real_SAFMN的过程中,使用的什么学习率调度器,学习率又是如何变化的?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants