-
Notifications
You must be signed in to change notification settings - Fork 4
/
RNN_MNIST.py
74 lines (55 loc) · 2.29 KB
/
RNN_MNIST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("temp/data/", one_hot=True)
from tensorflow.python.ops import rnn, rnn_cell
import numpy as np
# cycles of feed forward and backprop
hm_epochs = 2
n_classes = 10
batch_size = 128
chunk_size=28
n_chunks=28
rnn_size = 128
#height by width dATA TO BE INPUTTED
x = tf.placeholder('float', [None, n_chunks, chunk_size])
#TARGET OR LABEL
y = tf.placeholder('float')
def recurrent_neural_network_model(x):
# number of layers i
layer ={ 'weights': tf.Variable(tf.random_normal([rnn_size, n_classes])),
'bias': tf.Variable(tf.random_normal([n_classes]))}
print(x)
x = tf.transpose(x,[1,0,2])
print(x)
x = tf.reshape(x, [-1,chunk_size])
print(x)
x = tf.split(x,n_chunks, 0)
print(x)
from tensorflow.contrib import rnn
lstm_cell = rnn.BasicLSTMCell(rnn_size)
outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32)
output = tf.matmul(outputs[-1], layer['weights']) + layer['bias']
return output
def train_neural_network(x):
prediction = recurrent_neural_network_model(x)
print(prediction.shape)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
for epoch in range(hm_epochs):
epoch_loss =0
for _ in range(int(mnist.train.num_examples/batch_size)):
epoch_x, epoch_y = mnist.train.next_batch(batch_size)
epoch_x= epoch_x.reshape((batch_size,n_chunks,chunk_size ))
#print(epoch_x)
print(epoch_x.shape)
print(epoch_y.shape)
_, c = sess.run([optimizer,cost],feed_dict={x: epoch_x, y: epoch_y})
epoch_loss += c
print('Epoch', epoch, 'compleated out of', hm_epochs, 'loss:', epoch_loss)
# print('F1 score: ', f1)
correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct,'float'))
print('Accuracy:', accuracy.eval({x:mnist.test.images.reshape((-1, n_chunks, chunk_size)), y:mnist.test.labels}))
train_neural_network(x)