-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtraining.py
101 lines (71 loc) · 3.81 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
'''Implements a generic training loop.
'''
import torch
import utils
from torch.utils.tensorboard import SummaryWriter
from tqdm.autonotebook import tqdm
import numpy as np
import os
def train(model, train_dataloader, epochs, lr, steps_til_summary, epochs_til_checkpoint, model_dir, loss_fn, summary_fn):
optim = torch.optim.AdamW(lr=lr, params=model.parameters(), weight_decay=0.001)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optim, T_max=epochs, eta_min=1e-5)
summaries_dir = os.path.join(model_dir, 'summaries')
utils.cond_mkdir(summaries_dir)
checkpoints_dir = os.path.join(model_dir, 'checkpoints')
utils.cond_mkdir(checkpoints_dir)
writer = SummaryWriter(summaries_dir)
total_steps = 0
tmp_psnr = 0
best_psnr = 0
with tqdm(total=len(train_dataloader) * epochs) as pbar:
train_losses = []
for epoch in range(epochs):
if not epoch % epochs_til_checkpoint and epoch:
torch.save(model.state_dict(),
os.path.join(checkpoints_dir, 'model_epoch_%04d.pth' % epoch))
np.savetxt(os.path.join(checkpoints_dir, 'train_losses_epoch_%04d.txt' % epoch),
np.array(train_losses))
for step, (model_input, gt) in enumerate(train_dataloader):
# GPU
model_input = {key: value.cuda() for key, value in model_input.items()}
gt = {key: value.cuda() for key, value in gt.items()}
gt["img"] = gt["img"].float()
gt["img"] = (gt["img"]-127.5)/(127.5)
model_output = model(model_input)
losses = loss_fn(model_output, gt)
train_loss = 0.
for loss_name, loss in losses.items():
single_loss = loss.mean()
writer.add_scalar(loss_name, single_loss, total_steps)
tmp_psnr = 10*torch.log10(4/single_loss)
writer.add_scalar(loss_name+"_psnr", tmp_psnr, total_steps)
writer.add_scalar("lr", float(scheduler.get_last_lr()[0]), total_steps)
train_loss += single_loss
if tmp_psnr > best_psnr and not (total_steps+1) % (200):
torch.save({'epoch': total_steps,
'model': model.state_dict(),
'optimizer': optim.state_dict(),
'scheduler': scheduler.state_dict(),
}, os.path.join(checkpoints_dir, 'model_best.pth'))
best_psnr = tmp_psnr
optim.zero_grad()
train_loss.backward()
optim.step()
scheduler.step()
train_losses.append(train_loss.item())
writer.add_scalar("total_train_loss", train_loss, total_steps)
model_output = None
if not total_steps % steps_til_summary:
psnr = summary_fn(model, model_input, gt, writer, total_steps)
tqdm.write("Epoch %d, Total loss %0.6f, psnr: %0.6f" % (epoch, train_loss, psnr))
pbar.update(1)
total_steps += 1
torch.save({'epoch': total_steps,
'model': model.state_dict(),
'optimizer': optim.state_dict(),
'scheduler': scheduler.state_dict(),
}, os.path.join(checkpoints_dir, f'model_final.pth'))
psnr = summary_fn(model, model_input, gt, writer, total_steps)
writer.close()
np.savetxt(os.path.join(checkpoints_dir, 'train_losses_final.txt'), np.array(train_losses))
return psnr