From 2eca7eb2c26c257b5dab93a6bcfd4bafa4f004dc Mon Sep 17 00:00:00 2001 From: stratisMarkou Date: Sun, 3 Mar 2024 15:18:45 +0000 Subject: [PATCH] Update documentation --- ...9970a2480a162fbdea91fc0457288013bc5385.svg | 12206 ++++ ...9eabc285831da1c469fc151ee587d52a47cf0c.svg | 4818 ++ ...202b0f319d95885cc60af672585d0491bfa309.svg | 48186 ++++++++++++++++ ...4e6da669b251375cb4cefe3b673912eaf19c3c.svg | 3907 ++ ...3717c39cdd6d2c88f2d5bebc9dbf95b6cd6918.svg | 15206 +++++ _sources/book/papers/rff/rff.ipynb | 4 +- book/papers/rff/rff.html | 22 +- prf-prf.html | 4 +- searchindex.js | 2 +- 9 files changed, 84339 insertions(+), 16 deletions(-) create mode 100644 _images/0d12a93b195058bc3b36ca70689970a2480a162fbdea91fc0457288013bc5385.svg create mode 100644 _images/55b57407bf62e81b290fde85f49eabc285831da1c469fc151ee587d52a47cf0c.svg create mode 100644 _images/59dd7db9479748fbeb14212ef8202b0f319d95885cc60af672585d0491bfa309.svg create mode 100644 _images/5f7d86f792b91e8bb21c7c15594e6da669b251375cb4cefe3b673912eaf19c3c.svg create mode 100644 _images/6ea44423180a290649f9077f103717c39cdd6d2c88f2d5bebc9dbf95b6cd6918.svg diff --git a/_images/0d12a93b195058bc3b36ca70689970a2480a162fbdea91fc0457288013bc5385.svg b/_images/0d12a93b195058bc3b36ca70689970a2480a162fbdea91fc0457288013bc5385.svg new file mode 100644 index 00000000..0e97c359 --- /dev/null +++ b/_images/0d12a93b195058bc3b36ca70689970a2480a162fbdea91fc0457288013bc5385.svg @@ -0,0 +1,12206 @@ + + + + + + + + 2024-03-03T15:18:42.549717 + image/svg+xml + + + Matplotlib v3.8.0, https://matplotlib.org/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/_images/55b57407bf62e81b290fde85f49eabc285831da1c469fc151ee587d52a47cf0c.svg b/_images/55b57407bf62e81b290fde85f49eabc285831da1c469fc151ee587d52a47cf0c.svg new file mode 100644 index 00000000..4bc36437 --- /dev/null +++ b/_images/55b57407bf62e81b290fde85f49eabc285831da1c469fc151ee587d52a47cf0c.svg @@ -0,0 +1,4818 @@ + + + + + + + + 2024-03-03T15:18:34.488151 + image/svg+xml + + + Matplotlib v3.8.0, https://matplotlib.org/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/_images/59dd7db9479748fbeb14212ef8202b0f319d95885cc60af672585d0491bfa309.svg b/_images/59dd7db9479748fbeb14212ef8202b0f319d95885cc60af672585d0491bfa309.svg new file mode 100644 index 00000000..c55ddd86 --- /dev/null +++ b/_images/59dd7db9479748fbeb14212ef8202b0f319d95885cc60af672585d0491bfa309.svg @@ -0,0 +1,48186 @@ + + + + + + + + 2024-03-03T15:18:33.225442 + image/svg+xml + + + Matplotlib v3.8.0, https://matplotlib.org/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/_images/5f7d86f792b91e8bb21c7c15594e6da669b251375cb4cefe3b673912eaf19c3c.svg b/_images/5f7d86f792b91e8bb21c7c15594e6da669b251375cb4cefe3b673912eaf19c3c.svg new file mode 100644 index 00000000..5d77d75a --- /dev/null +++ b/_images/5f7d86f792b91e8bb21c7c15594e6da669b251375cb4cefe3b673912eaf19c3c.svg @@ -0,0 +1,3907 @@ + + + + + + + + 2024-03-03T15:18:39.985806 + image/svg+xml + + + Matplotlib v3.8.0, https://matplotlib.org/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/_images/6ea44423180a290649f9077f103717c39cdd6d2c88f2d5bebc9dbf95b6cd6918.svg b/_images/6ea44423180a290649f9077f103717c39cdd6d2c88f2d5bebc9dbf95b6cd6918.svg new file mode 100644 index 00000000..cc214717 --- /dev/null +++ b/_images/6ea44423180a290649f9077f103717c39cdd6d2c88f2d5bebc9dbf95b6cd6918.svg @@ -0,0 +1,15206 @@ + + + + + + + + 2024-03-03T15:18:39.162152 + image/svg+xml + + + Matplotlib v3.8.0, https://matplotlib.org/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/_sources/book/papers/rff/rff.ipynb b/_sources/book/papers/rff/rff.ipynb index 52e59cd2..71882c8a 100644 --- a/_sources/book/papers/rff/rff.ipynb +++ b/_sources/book/papers/rff/rff.ipynb @@ -12,11 +12,11 @@ "source": [ "# Random Fourier features\n", "\n", - "\n", - "Star\n", + "Star\n", "Issue\n", "Watch\n", "Follow\n", + "\n", "\n", "One central difficulty with Gaussian Processes (GPs), and more generally all kernel methods such as Support Vector Machines (SVMs), is their computational cost. Exact GP regression scales cubically $\\mathcal{O}(N^3)$ in the number of datapoints $N,$ which is prohibitive for even modestly large datasets.\n", "Therefore we typically have to make approximations, of which there is a wealth of possible options. This page presents Random Fourier Features (RFF), {cite}`rahimi2007random` an approximation which is applicable to stationary kernels.\n", diff --git a/book/papers/rff/rff.html b/book/papers/rff/rff.html index 85a5e5e5..86be6a1f 100644 --- a/book/papers/rff/rff.html +++ b/book/papers/rff/rff.html @@ -429,11 +429,11 @@

Contents

Random Fourier features#

- -

Star +

Star Issue Watch Follow

+

One central difficulty with Gaussian Processes (GPs), and more generally all kernel methods such as Support Vector Machines (SVMs), is their computational cost. Exact GP regression scales cubically \(\mathcal{O}(N^3)\) in the number of datapoints \(N,\) which is prohibitive for even modestly large datasets. Therefore we typically have to make approximations, of which there is a wealth of possible options. This page presents Random Fourier Features (RFF), [Rahimi et al., 2007] an approximation which is applicable to stationary kernels.

RFF relies on the fact that kernels of stationary processes can be expressed as the Fourier transform of a probability density function. @@ -625,7 +625,7 @@

Sampling from the prior
-../../../_images/0d52c17090e987bca5119998b6cb17ec8c9f2e7de33a158f7aeb5a225e98f396.svg
+../../../_images/59dd7db9479748fbeb14212ef8202b0f319d95885cc60af672585d0491bfa309.svg

@@ -635,7 +635,7 @@

Regression with RFF features\(N = 5000,\) which would be quite slow to process with an exact GP model.

-../../../_images/049c3cdb224db146ecc6247782819ed3b83ad6c87e748b6a7cd91ce6750416f7.svg
+../../../_images/55b57407bf62e81b290fde85f49eabc285831da1c469fc151ee587d52a47cf0c.svg

The function rff_posterior below implements Bayesian linear regression with randomly sampled Fourier features. For more details on Bayesian linear regression see Chapter 3 of Bishop’s PRML book.[Bishop, 2006]

@@ -732,8 +732,8 @@

Regression with RFF features
Timing exact GP regression:
 
-
-../../../_images/14fa6dfc78f73a6d7fe3e6e2a8e77d09802af8a9735bb8427c286a9e82a420ef.svg
+../../../_images/6ea44423180a290649f9077f103717c39cdd6d2c88f2d5bebc9dbf95b6cd6918.svg

RFF has produced sensible regressors in each case, significantly faster than exact GP regression. The approximate posteriors roughly match the exact posteriors, while being significantly quicker to compute.

@@ -759,11 +759,11 @@

Variance starvation
-../../../_images/2bd00cbb0a1b0264dee9444fa9b3c10869c02e059c4248c06618bb4433d3eabe.svg
+../../../_images/5f7d86f792b91e8bb21c7c15594e6da669b251375cb4cefe3b673912eaf19c3c.svg
-../../../_images/4712213dcac9a64a5adb0a08a3a8ac33b1df131a4d7897bf4b4451f43b370943.svg
+../../../_images/0d12a93b195058bc3b36ca70689970a2480a162fbdea91fc0457288013bc5385.svg

The variance of the approximate estimator in between the data is (in some cases), signiticantly smaller than that of the exact posterior. So the speedup that the RFF gives does not come without a cost. In certain cases, we can end up with approximate posteriors which are significantly overfitted. This can be alleviated by increasing the number of RFF features. However this increases the computational cost of performing regression and may defeat the purpose of using RFF features in the first place.

diff --git a/prf-prf.html b/prf-prf.html index d79d6232..633095c6 100644 --- a/prf-prf.html +++ b/prf-prf.html @@ -484,7 +484,7 @@

Proof Index

-
definition-1 (book/toc/002-cfl) + definition-1 (book/papers/rff/rff) definition   @@ -908,7 +908,7 @@

Proof Index

- theorem-0 (book/papers/svgd/svgd) + theorem-0 (book/papers/rff/rff) theorem   diff --git a/searchindex.js b/searchindex.js index fbe0b74f..8f1161ad 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["book/mira/000-exercises", "book/mira/000-intro", "book/mira/001-riemann", "book/mira/002-measures", "book/papers/ais/ais", "book/papers/intro", "book/papers/num-sde/num-sde", "book/papers/rff/rff", "book/papers/score-matching/score-matching", "book/papers/svgd/svgd", "book/papers/why-covariances/why-covariances", "book/prob-intro/ch01/content", "book/prob-intro/ch02/content", "book/prob-intro/ch03/content", "book/prob-intro/ch04/content", "book/prob-intro/ch05/content", "book/prob-intro/ch06/content", "book/prob-intro/ch07/content", "book/prob-intro/ch08/content", "book/prob-intro/ch09/content", "book/prob-intro/ch10/content", "book/prob-intro/ch11/content", "book/prob-intro/ch12/content", "book/prob-intro/intro", "book/toc/000-exercises", "book/toc/000-intro", "book/toc/001-fsa", "book/toc/002-cfl", "intro"], "filenames": ["book/mira/000-exercises.md", "book/mira/000-intro.md", "book/mira/001-riemann.md", "book/mira/002-measures.md", "book/papers/ais/ais.ipynb", "book/papers/intro.md", "book/papers/num-sde/num-sde.ipynb", "book/papers/rff/rff.ipynb", "book/papers/score-matching/score-matching.md", "book/papers/svgd/svgd.ipynb", "book/papers/why-covariances/why-covariances.md", "book/prob-intro/ch01/content.ipynb", "book/prob-intro/ch02/content.ipynb", "book/prob-intro/ch03/content.ipynb", "book/prob-intro/ch04/content.ipynb", "book/prob-intro/ch05/content.ipynb", "book/prob-intro/ch06/content.ipynb", "book/prob-intro/ch07/content.ipynb", "book/prob-intro/ch08/content.ipynb", "book/prob-intro/ch09/content.md", "book/prob-intro/ch10/content.md", "book/prob-intro/ch11/content.md", "book/prob-intro/ch12/content.md", "book/prob-intro/intro.md", "book/toc/000-exercises.md", "book/toc/000-intro.md", "book/toc/001-fsa.ipynb", "book/toc/002-cfl.ipynb", "intro.md"], "titles": ["Exercises", "Masure, integration and real analysis", "Riemann integration", "Measures", "Annealed importance sampling", "Stream of papers", "Numerical simulation of SDEs", "Random Fourier features", "Estimation by score matching", "Stein variational gradient descent", "Why covariance functions?", "Events and Probabilities", "Discrete random variables", "Multivariate discrete distributions", "Probability generating functions", "Distribution and density functions", "Multivariate distributions", "Moment generating functions", "Main limit theorems", "Branching processes", "Random walks", "Processes in continuous time", "Markov chains", "Probability: An introduction", "Excercises", "Theory of Computation", "Finite Automata and Regular Expressions", "PDAs and context-free grammars", "Home"], "terms": {"thi": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28], "page": [0, 6, 7, 28], "give": [0, 2, 3, 4, 7, 9, 10, 11, 12, 15, 19, 20, 24, 26], "solut": [0, 1, 3, 6, 20, 22, 24], "from": [0, 2, 3, 4, 5, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28], "book": [0, 1, 2, 7, 18, 22, 23, 24], "measur": [0, 1, 2, 4, 7, 12, 13, 16, 18, 19], "integr": [0, 3, 4, 7, 8, 9, 10, 15, 16, 17, 21], "real": [0, 2, 3, 7, 10, 12, 17, 18, 21], "analysi": [0, 2], "sheldon": [0, 1], "axler": [0, 1], "we": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27], "have": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28], "been": [0, 4, 9, 24, 26], "work": [0, 1, 4, 6, 7, 9, 10, 17], "through": [0, 1, 9, 10, 17, 23, 24], "adrian": [0, 1], "goldwas": [0, 1], "shreya": [0, 1], "padhi": [0, 1], "ar": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28], "joint": [0, 4, 10], "effort": 0, "pleas": [0, 5, 25, 28], "email": [0, 5, 28], "me": [0, 5, 25, 28], "you": [0, 5, 6, 24, 25, 28], "find": [0, 8, 9, 14, 17, 24], "ani": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 15, 16, 17, 18, 21, 22, 24, 25, 26, 27, 28], "error": [0, 1, 4, 5, 7, 28], "other": [0, 2, 4, 5, 6, 7, 8, 10, 12, 14, 16, 17, 19, 20, 21, 22, 24, 26, 27], "comment": 0, "suppos": [0, 2, 3, 4, 6, 8, 9, 10, 17, 18, 19, 22, 24, 26, 27], "f": [0, 2, 3, 4, 6, 7, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 22, 24, 26, 27], "b": [0, 2, 3, 6, 7, 10, 11, 12, 15, 16, 17, 18, 20, 21, 24, 26, 27], "mathbb": [0, 2, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22], "r": [0, 2, 6, 7, 9, 10, 11, 12, 13, 15, 16, 17, 18, 22, 24, 26, 27], "bound": [0, 3, 7, 17, 20, 24], "function": [0, 4, 7, 8, 9, 20, 21, 22, 24, 26, 27], "l": [0, 2, 22, 24, 26, 27], "p": [0, 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27], "u": [0, 2, 16, 17, 18, 20, 21, 22, 27], "some": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 27, 28], "partit": [0, 10], "prove": [0, 3, 7, 11, 13, 15, 17, 18, 19, 22, 24, 26, 27], "constant": [0, 6, 7, 8, 12, 15, 17, 18, 20], "let": [0, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27], "x_0": [0, 2, 4, 6, 19, 22], "ldot": [0, 2, 3], "x_n": [0, 2, 4, 6, 9, 10, 12, 14, 18, 22, 26], "note": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26], "each": [0, 2, 3, 4, 6, 7, 9, 10, 11, 12, 14, 18, 19, 20, 21, 24, 26, 27], "n": [0, 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 24, 26], "x_": [0, 2, 4, 6, 9, 10, 15, 19, 22], "inf_": [0, 2], "x": [0, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26], "sup_": [0, 2, 7], "The": [0, 2, 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 26, 27], "infimum": 0, "supremum": 0, "funtion": 0, "domain": [0, 2, 3, 6, 17], "equal": [0, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 26, 27], "onli": [0, 2, 3, 4, 7, 8, 9, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27], "therefor": [0, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 17, 18, 19, 21, 22, 24, 26, 27], "interv": [0, 2, 6, 12, 15, 19, 21], "so": [0, 2, 3, 4, 6, 7, 8, 11, 12, 17, 18, 19, 20, 21, 22, 24, 26, 27], "must": [0, 4, 6, 8, 12, 18, 21, 22, 24, 26], "leq": [0, 3, 4, 6, 7, 9, 11, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27], "s": [0, 2, 4, 9, 10, 12, 14, 15, 16, 19, 20, 21, 22, 24, 25, 26, 27], "t": [0, 2, 3, 4, 6, 7, 9, 10, 12, 15, 16, 17, 18, 19, 21, 22, 24, 27], "defin": [0, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 24, 26, 27], "begin": [0, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27], "case": [0, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27], "text": [0, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26], "0": [0, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27], "otherwis": [0, 2, 3, 4, 13, 15, 16, 17, 18, 20, 24, 26], "end": [0, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27], "riemann": [0, 6], "int_a": [0, 2], "p_n": [0, 14, 21, 24], "3n": 0, "2n": [0, 24, 26], "x_i": [0, 2, 8, 10, 22, 24], "i": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28], "frac": [0, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22], "satisifi": 0, "align": [0, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27], "sum_": [0, 2, 3, 4, 6, 7, 9, 12, 13, 17, 18, 20, 21, 22], "where": [0, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27], "term": [0, 3, 4, 6, 7, 8, 9, 11, 13, 14, 15, 17, 19, 22, 26], "come": [0, 3, 4, 7, 11, 18, 26], "fact": [0, 2, 3, 4, 6, 7, 8, 9, 11, 17, 18, 19, 21, 22, 26], "similarli": [0, 2, 3, 4, 18, 21, 22, 24, 26, 27], "upper": [0, 4, 24], "sum": [0, 3, 4, 6, 7, 8, 11, 12, 15, 18, 19, 20, 21, 22, 24, 27], "left": [0, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26], "right": [0, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 27], "which": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27], "impli": [0, 2, 3, 4, 7, 8, 16, 19, 20, 21, 22, 24, 27], "geq": [0, 3, 4, 7, 11, 12, 14, 17, 18, 19, 20, 21, 22, 24, 26, 27], "everi": [0, 2, 6, 8, 12, 15, 17, 19, 22, 24, 26, 27], "epsilon": [0, 2, 3, 7, 9, 18, 19, 24, 26, 27], "exist": [0, 2, 3, 6, 12, 13, 15, 16, 17, 18, 21, 22, 24, 26, 27], "part": [0, 2, 3, 8, 21, 22, 24, 26, 27], "Then": [0, 2, 3, 6, 7, 8, 9, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27], "definit": [0, 2, 4, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 26, 27], "inf_p": [0, 2], "sup_p": [0, 2], "follow": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28], "rearrang": [0, 3, 12, 13, 17, 22], "rewrit": [0, 4], "inf": [0, 2, 3, 15, 17, 18, 21, 22], "us": [0, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28], "sup": [0, 2, 3, 17, 18], "cup": [0, 2, 3, 11, 22, 24, 26], "refin": [0, 2, 6], "can": [0, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 27], "go": [0, 1, 4, 7, 8, 21, 22, 23, 24], "direct": [0, 3, 4, 8, 10, 14, 18], "take": [0, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 24, 26], "over": [0, 2, 3, 4, 6, 7, 8, 9, 10, 13, 16, 17, 18, 19, 21, 22, 24, 26, 28], "all": [0, 2, 4, 6, 7, 10, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 26, 27], "mean": [0, 2, 4, 6, 7, 8, 9, 10, 11, 14, 22, 24, 26, 27], "g": [0, 3, 4, 6, 9, 12, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24, 26, 27], "now": [0, 3, 4, 6, 7, 8, 9, 10, 18, 19, 20, 21, 22, 24, 26, 27], "sinc": [0, 2, 3, 4, 6, 7, 8, 10, 13, 15, 17, 18, 19, 20, 21, 22, 24, 26, 27], "p_f": 0, "p_g": 0, "contain": [0, 2, 4, 10, 11, 12, 17, 18, 22, 23, 24, 26, 27], "point": [0, 2, 4, 6, 7, 10, 12, 17, 18, 19, 20, 24, 26, 27], "inequ": [0, 3, 4, 7, 19, 22], "properti": [0, 2, 10, 11, 13, 24], "If": [0, 2, 3, 4, 5, 6, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28], "again": [0, 2, 6, 16, 19, 26, 27], "also": [0, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27], "finit": [0, 2, 4, 6, 7, 9, 11, 18, 22, 24, 27], "mani": [0, 2, 4, 6, 9, 12, 15, 17, 24], "h": [0, 3, 4, 6, 9, 10, 16, 21, 22, 24], "zero": [0, 4, 6, 17, 18, 21, 24, 26, 27], "uniform": [0, 2], "name": [0, 3, 6, 7, 11, 26, 27], "x_1": [0, 2, 4, 10, 12, 14, 15, 16, 18, 19, 21, 22, 24, 26], "2k": 0, "k": [0, 2, 3, 4, 7, 9, 10, 12, 14, 17, 19, 20, 21, 22, 24, 26, 27], "number": [0, 2, 3, 4, 6, 7, 9, 10, 12, 16, 17, 20, 21, 22, 24, 26, 27], "non": [0, 3, 4, 7, 8, 11, 14, 15, 17, 18, 19, 21, 22], "4k": 0, "made": [0, 11, 24, 26], "arbitrarili": [0, 4, 24], "larg": [0, 4, 7, 9, 10, 24], "becaus": [0, 2, 3, 4, 6, 8, 9, 10, 12, 15, 16, 17, 22, 24, 26, 27], "two": [0, 2, 3, 4, 6, 7, 9, 10, 13, 14, 15, 16, 18, 19, 20, 21, 24, 26, 27], "know": [0, 24, 27], "satisfi": [0, 3, 6, 8, 11, 12, 13, 15, 16, 18, 19, 21, 22, 24, 26, 27], "For": [0, 2, 3, 4, 6, 7, 9, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27], "denot": [0, 4, 7, 8, 9, 11, 12, 14, 17, 24, 26], "divid": [0, 21, 22], "size": [0, 3, 6, 7, 19, 24], "lim_": [0, 2, 3, 6, 16, 18, 19, 20, 21, 22], "infti": [0, 2, 6, 8, 12, 15, 16, 17, 18, 19, 20, 21, 22], "abov": [0, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 24, 26], "below": [0, 2, 6, 7, 9, 11, 13, 16, 17, 18, 21, 24, 26, 27], "By": [0, 3, 4, 6, 7, 8, 9, 12, 14, 17, 18, 21, 22, 24, 26, 27], "r_": [0, 6, 7, 10, 26, 27], "delta": [0, 2, 3, 6, 7, 15, 17, 18, 24, 26, 27], "smallest": [0, 19, 24, 26], "subinterv": [0, 2], "e_": [0, 3, 19], "z": [0, 3, 7, 9, 13, 15, 16, 17, 18, 21, 22, 24, 26], "posit": [0, 2, 3, 4, 6, 7, 8, 9, 10, 17, 20, 21, 22, 26], "integ": [0, 2, 14, 20, 21, 24, 26, 27], "2c": 0, "k_": 0, "sequenc": [0, 2, 4, 9, 12, 14, 18, 20, 21, 22, 24, 26, 27], "tend": [0, 6, 21], "subsequ": 0, "increas": [0, 2, 4, 7, 9, 15, 18, 26], "converg": [0, 12, 13, 14, 15, 16, 17, 19, 21], "repeat": [0, 3, 4, 24, 26, 27], "argument": [0, 2, 3, 6, 10, 13, 18], "obtain": [0, 3, 4, 6, 7, 8, 9, 10, 12, 14, 15, 17, 18, 19, 20, 21, 22, 24, 26, 27], "an": [0, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28], "analog": [0, 6, 15, 16, 27], "result": [0, 2, 3, 4, 8, 9, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27], "thefor": 0, "rieman": [0, 2], "j": [0, 2, 3, 6, 16, 18, 22, 23, 24, 26], "similar": [0, 2, 3, 4, 9, 15, 16, 17, 27], "n_": [0, 8, 12, 13, 18, 20, 21], "x_j": [0, 2, 6, 10, 22, 24], "limit": [0, 6, 7, 10, 19, 21, 22, 26], "p_": [0, 8, 9, 13, 21, 22, 24], "ad": [0, 2, 3, 13, 15, 16, 21, 24, 26, 27], "conclud": [0, 2, 3, 20, 24], "furthermor": [0, 22], "condit": [0, 6, 8, 10, 13, 17, 18, 19, 20, 21, 22, 26, 27], "hold": [0, 2, 3, 4, 6, 8, 12, 15, 17, 18, 19, 21, 22, 26, 27], "int_c": 0, "_": [0, 4, 7, 8, 9, 10, 16, 17, 19, 22, 24, 26], "x_2": [0, 12, 14, 15, 16, 18, 19, 21, 22, 24], "arriv": [0, 3, 6, 7, 8, 9, 12, 17, 18, 19, 20, 22, 26], "p_1": [0, 14, 21], "p_2": [0, 14], "respect": [0, 2, 6, 8, 9, 10, 11, 14, 15, 17, 21, 24, 26], "combin": [0, 7, 11, 18, 24], "small": [0, 4, 6, 7, 9], "explain": 0, "why": [0, 4], "doe": [0, 3, 4, 6, 7, 8, 9, 10, 12, 17, 18, 19, 20, 22, 24, 26, 27], "space": [0, 2, 4, 7, 8, 9, 10, 15, 16, 19, 22, 24, 26], "mu": [0, 3, 6, 10, 14, 15, 17, 18, 19, 21], "e": [0, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27], "neq": [0, 3, 6, 8, 17, 19, 20, 21, 22, 24, 26, 27], "instead": [0, 3, 4, 6, 9, 10, 12, 16, 18, 26], "subseteq": [0, 3, 11, 15, 16, 19, 22, 24, 26, 27], "w_1": [0, 24, 26], "w_2": [0, 24, 26], "w_n": [0, 4, 6, 24, 26], "bigcup_": [0, 3], "requir": [0, 2, 3, 4, 12, 18, 22, 24, 26, 27], "exampl": [0, 2, 4, 6, 8, 9, 11, 12, 13, 15, 18, 24, 26], "meeasur": 0, "via": [0, 3, 4, 7, 9, 26], "determin": [0, 9, 12, 14, 15, 17, 20, 21, 24], "subset": [0, 2, 6, 7, 10, 11, 12, 22, 24], "convers": [0, 3, 4, 24], "write": [0, 2, 3, 6, 7, 8, 10, 15, 18, 20, 21, 22, 24, 26, 27], "binari": [0, 3, 21, 24, 26], "expans": [0, 6, 14, 18], "x_1x_2": 0, "see": [0, 2, 3, 4, 6, 7, 8, 10, 12, 14, 17, 18, 19, 20, 21, 22, 24, 26], "mathbf": [0, 10, 22], "3k": 0, "mathcal": [0, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 26, 27], "set": [0, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27], "disjoint": [0, 11, 20, 24, 27], "countabl": [0, 11, 12, 15], "_k": [0, 4], "least": [0, 2, 3, 4, 5, 8, 19, 22, 24, 26], "one": [0, 2, 3, 4, 7, 8, 9, 10, 11, 12, 16, 17, 18, 19, 20, 22, 24, 26, 27], "infinit": [0, 2, 6, 10, 17, 18, 22, 24, 26, 27], "element": [0, 3, 10, 11, 21, 24, 26], "a_1": [0, 3, 11, 13, 24, 26, 27], "a_2": [0, 3, 11, 13, 24, 26, 27], "addit": [0, 4, 6, 11, 13, 18, 20, 24, 26, 27], "a_n": [0, 3, 6, 11, 13, 20], "contradict": [0, 3, 18, 21, 22, 24, 26, 27], "im": [0, 12, 13], "rang": [0, 2, 3, 4, 6, 17, 21], "setminu": [0, 2, 3, 11], "given": [0, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27], "sigma": [0, 7, 15, 17, 18, 19, 24, 26, 27], "algebra": 0, "nu": 0, "singleton": [0, 22, 26], "cap": [0, 3, 11, 13, 20, 24, 26, 27], "agre": 0, "need": [0, 2, 3, 4, 6, 10, 12, 15, 16, 22, 24, 26], "show": [0, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 17, 18, 19, 21, 22, 24, 26, 27], "first": [0, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 17, 18, 19, 20, 22, 24, 26, 27], "whose": [0, 3, 4, 6, 8, 12, 15, 19, 26], "second": [0, 2, 3, 6, 8, 17, 18, 19, 21, 22, 24, 26, 27], "emptyset": [0, 3, 11, 15, 26], "third": [0, 2, 3, 10, 15, 17, 19, 22, 24, 27], "decreas": [0, 9, 15, 19, 21, 27], "e_1": [0, 3, 19], "e_2": [0, 3, 19], "cdot": [0, 3, 6, 9, 12, 16, 21], "bigcap_": [0, 3], "e_n": [0, 3], "formula": [0, 6, 9, 20], "countatbl": 0, "complet": [0, 3, 19, 24], "descript": [0, 24], "valu": [0, 2, 3, 4, 6, 7, 9, 10, 12, 14, 15, 16, 17, 19, 20, 21, 22], "along": [0, 1, 8, 26], "consist": [0, 26, 27], "those": [0, 24, 26], "decim": 0, "hundr": 0, "consecut": 0, "4s": 0, "borel": 0, "what": [0, 3, 6, 10, 12, 24, 26, 27], "lebesgu": [0, 2, 3], "union": [0, 11, 24], "x_k": [0, 2, 4, 21, 22, 24], "m": [0, 2, 3, 4, 7, 9, 10, 14, 18, 20, 22, 24, 26, 27], "100": [0, 4, 7], "togeth": [0, 2, 3, 4, 20, 21, 22, 24, 26], "close": [0, 2, 4, 6, 7, 8, 9, 11, 22, 24, 26], "open": [0, 2], "comput": [0, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 20, 24, 26, 27], "ration": [0, 2, 21], "ha": [0, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 26, 27], "digit": 0, "do": [0, 2, 3, 4, 6, 8, 9, 10, 17, 24, 26, 27], "last": [0, 2, 3, 4, 6, 8, 12, 13, 15, 26, 27], "its": [0, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 24, 26, 27], "up": [0, 3, 4, 6, 7, 12, 15, 24, 26], "recurs": [0, 19, 20, 21, 22, 26], "relat": [0, 7, 11, 13, 15, 16, 17, 18, 20, 21, 22, 24], "ten": [0, 6], "possibl": [0, 2, 4, 7, 9, 10, 11, 12, 17, 20, 26], "append": [0, 4, 6], "99": 0, "fewer": [0, 24, 26], "than": [0, 2, 3, 4, 7, 9, 11, 13, 17, 18, 21, 22, 24, 26, 27], "would": [0, 2, 3, 4, 7, 10, 11, 12, 17, 18, 24], "collect": [0, 5, 11, 19, 24], "inform": [0, 6, 10, 11, 12, 17], "c_n": 0, "c_": [0, 19, 21], "bmatrix": [0, 10, 24], "dot": [0, 2, 4, 10, 17, 18, 24, 26, 27], "vdot": [0, 19], "ddot": 0, "includ": [0, 1, 2, 3, 6, 12, 13, 18, 24, 26], "th": [0, 2, 8, 9, 10, 12, 14, 17, 19, 22, 24], "correspond": [0, 4, 6, 7, 9, 10, 11, 17, 18, 21, 22, 24, 26, 27], "wai": [0, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 15, 18, 20, 22, 24, 26, 27], "choos": [0, 6, 12, 20, 21, 24], "arbitrari": [0, 3, 4, 6, 9], "sequnc": 0, "deriv": [0, 2, 4, 7, 8], "earlier": [0, 3, 4, 11, 26], "express": [0, 2, 6, 7, 8, 9, 11, 12, 13, 15, 16, 19, 20, 24], "summat": [0, 20], "vector": [0, 7, 8, 9, 10, 22], "cap_": [0, 3], "final": [0, 3, 12, 15, 21, 22, 24, 26], "move": [0, 24, 27], "insid": 0, "matrix": [0, 10, 22], "power": [0, 3, 19, 26, 27], "lceil": 0, "rceil": 0, "sim": [0, 3, 4, 6, 7, 9], "differ": [0, 4, 6, 7, 13, 18, 20, 26, 27], "equival": [0, 11, 16, 18, 19, 22, 24, 26, 27], "v": [0, 3, 4, 6, 16, 17, 20, 21, 22, 27], "exactli": [0, 2, 3, 4, 20, 24, 26, 27], "class": [0, 3, 4, 17, 22, 24, 26, 27], "In": [0, 2, 3, 4, 6, 7, 8, 9, 10, 11, 14, 16, 17, 18, 19, 20, 22, 24, 26, 27], "proof": [0, 2, 3, 6, 8, 12, 13, 17, 18, 19, 20, 21, 22, 26, 27], "nonaddit": 0, "outer": [0, 2], "line": [0, 3, 4, 17, 19, 21, 22], "preliminari": 0, "phrase": 0, "nontrivi": 0, "more": [0, 2, 3, 4, 6, 7, 9, 11, 13, 15, 16, 18, 21, 24, 26, 27], "recal": 0, "might": [0, 8, 11, 12, 17], "neither": [0, 24], "minu": [0, 18, 26], "cup_": [0, 3], "written": [0, 4, 12, 13, 15, 16, 17, 22, 24, 27], "sai": [0, 3, 6, 10, 11, 16, 17, 18, 22, 24, 26, 27], "u_1": [0, 14, 27], "u_2": [0, 14, 27], "u_n": [0, 14, 18, 20], "most": [0, 1, 4, 5, 9, 15, 17, 24], "endpoint": [0, 2, 3], "consid": [0, 3, 4, 6, 7, 8, 9, 10, 12, 13, 15, 17, 18, 19, 20, 21, 22, 24, 26, 27], "cover": [0, 25], "hein": 0, "theorem": [0, 2, 6, 8, 19, 20, 21, 22, 26], "subcov": 0, "reason": [0, 4, 10, 11, 12, 17], "same": [0, 3, 4, 6, 7, 10, 14, 16, 17, 18, 22, 24, 26, 27], "appli": [0, 3, 4, 6, 8, 9, 10, 11, 17, 18, 22, 24, 26, 27], "lastli": [0, 2, 3, 7, 12, 22, 27], "deal": [0, 9, 14, 15, 19, 22], "unbound": [0, 9], "form": [0, 2, 4, 6, 7, 9, 15, 16, 17, 18, 24, 26], "miss": [0, 11], "entir": [0, 10, 24, 25, 26], "thei": [0, 3, 4, 5, 7, 12, 14, 16, 17, 22, 23, 24, 26, 27, 28], "themselv": 0, "specif": [0, 3, 4, 14], "As": [0, 2, 4, 6, 11, 12, 16, 17, 21, 24, 26], "shown": [0, 2, 6, 11, 12, 13, 14, 15, 16, 17, 18, 20, 26], "f_1": [0, 2, 3, 9, 24, 26], "f_2": [0, 2, 3, 24, 26], "f_n": [0, 2, 20], "c_k": 0, "i_n": [0, 3, 22], "i_1": [0, 3, 22], "i_2": [0, 3, 22], "attain": [0, 12], "relabel": [0, 3], "order": [0, 2, 14, 18, 24, 26, 27], "seri": [0, 17, 19], "put": [0, 2, 3, 4, 26], "fix": [0, 3, 6, 24], "It": [0, 2, 4, 6, 10, 16, 17, 19, 21, 22, 26, 27], "g_1": [0, 3, 14, 19, 24, 27], "supseteq": 0, "g_2": [0, 14, 24, 27], "g_n": [0, 3, 14], "u_k": [0, 27], "translat": [0, 7], "invari": [0, 4, 7, 17], "precis": [0, 6, 15, 26], "continu": [0, 6, 7, 11, 12, 17, 19, 26], "pre": 0, "imag": [0, 12, 24], "under": [0, 2, 3, 4, 6, 8, 10, 11, 17, 22, 24], "leav": [0, 4, 12], "dilat": 0, "ta": [0, 17, 18], "multipl": [0, 9, 13, 24, 27], "tb": [0, 17], "scale": [0, 4, 7, 9, 15, 17], "absolut": [0, 7, 12, 13, 14, 15, 16, 17], "done": [0, 26], "r_1": [0, 2, 3, 26, 27], "r_2": [0, 2, 3, 26], "onc": [0, 2, 3, 4, 11, 12, 17, 21, 24, 27], "r_i": [0, 26, 27], "r_j": 0, "thu": [0, 3, 4, 7, 10, 19, 22, 24, 27], "subaddit": 0, "But": [0, 26], "turn": [0, 3, 4, 7, 9, 13, 26, 27], "These": [1, 2, 4, 11, 18, 23, 25, 27], "freeli": [1, 25], "avail": [1, 4, 8, 25], "onlin": [1, 25, 28], "progress": [1, 9], "current": [1, 4], "read": [1, 4, 5, 24, 26, 27], "group": 1, "exercis": [1, 23], "solv": [1, 4, 6, 7, 20], "like": [1, 2, 3, 7, 9, 12, 15, 16, 25], "my": [1, 10, 24, 25], "own": [1, 15, 24], "introduc": [2, 3, 4, 7, 13, 18, 20, 26, 27], "good": [2, 9], "enough": 2, "import": [2, 3, 6, 9, 10, 12, 17, 18, 26], "review": [2, 6, 12], "discuss": [2, 3, 6, 10, 13], "fall": [2, 9, 17], "short": [2, 6], "lead": [2, 3, 6, 12, 22, 24], "idea": [2, 3, 4, 9, 12, 18, 26, 27, 28], "appropri": [2, 3, 4, 6, 7, 9, 10, 12, 26], "length": [2, 24, 26, 27], "howev": [2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 20, 22, 24, 27], "too": [2, 6, 11, 18, 19], "fail": [2, 9], "captur": [2, 4, 9, 12, 17], "gener": [2, 3, 4, 7, 8, 9, 10, 11, 13, 15, 16, 18, 20, 21, 22, 26], "few": [2, 3, 4, 26], "down": [2, 4, 7, 10, 24], "approxim": [2, 4, 6, 8], "area": [2, 3, 18], "curv": 2, "rectangl": 2, "list": [2, 3, 4], "notat": [2, 6, 7, 9, 10, 14, 20, 21, 24, 26], "our": [2, 3, 4, 6, 7, 9, 10, 11, 12, 21, 26], "With": [2, 3, 6], "place": [2, 3, 5, 7, 11, 24], "1": [2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 26, 27], "veri": [2, 3, 4, 9, 10, 14, 23, 26, 27], "intermedi": 2, "reduc": [2, 4, 7, 9], "middl": [2, 4, 8], "less": [2, 3, 6, 17], "anoth": [2, 3, 4, 9, 10, 11, 12, 15, 16, 17, 18, 19, 24, 27], "directli": [2, 4, 6, 8, 12, 16], "previou": [2, 3, 10, 22, 24, 26, 28], "readi": 2, "thought": 2, "best": [2, 6, 15, 24], "taken": [2, 12, 16, 19, 21], "call": [2, 3, 4, 7, 8, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 26, 27], "section": [2, 9, 18], "about": [2, 3, 6, 7, 10, 11, 12, 16, 17, 18, 27], "uniformli": [2, 7, 15, 17], "concern": [2, 13], "frequent": 2, "estim": [2, 4, 6, 7], "while": [2, 4, 6, 7, 9, 10, 11, 21, 26], "suffici": [2, 6, 9, 19], "three": [2, 6, 7, 11, 18, 24, 26], "issu": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 17, 24, 25, 26, 27, 28], "handl": [2, 4, 7, 9, 27], "discontinu": 2, "extend": [2, 3, 13, 15, 16, 22, 24, 26, 27], "well": [2, 3, 4, 6, 7, 8, 9, 15, 16, 18, 21, 24, 26, 27], "certain": [2, 3, 6, 7, 11, 12, 14, 17, 19, 26], "particular": [2, 4, 6, 8, 12, 19, 22, 26, 27], "even": [2, 4, 6, 7, 9, 11, 18, 20, 26, 27], "next": [2, 4, 6, 7, 13, 18, 27], "four": 2, "illustr": [2, 4, 7, 9, 18], "q": [2, 3, 4, 9, 11, 12, 14, 20, 24, 26, 27], "On": [2, 4, 10, 17, 21], "hand": [2, 3, 10, 15, 17, 21, 27], "saw": 2, "further": [2, 4, 7, 9, 15, 16, 17, 19, 20, 22, 26], "sqrt": [2, 7, 9, 15, 17, 18], "standard": [2, 4, 6, 9, 15, 18], "could": [2, 4, 6, 10, 11, 12, 17], "int_0": [2, 15], "stackrel": [2, 27], "def": [2, 4, 6, 7, 9], "downarrow": 2, "approach": [2, 9, 10], "2": [2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 26, 27], "alwai": [2, 4, 7, 8, 10, 11, 12, 17, 26], "r_n": [2, 26], "r_k": [2, 3], "look": [2, 4, 6, 9, 26, 27], "expect": [2, 3, 4, 6, 7, 8, 9, 17, 19, 20, 22], "outlin": 2, "That": [2, 3, 12], "nonempti": [2, 3, 26], "wa": [2, 3, 4, 10, 12, 18, 24, 26, 27], "abl": [2, 7, 9, 10], "exchang": 2, "cannot": [2, 3, 4, 6, 8, 9, 10, 21, 22, 24, 26, 27], "provid": [2, 3, 6, 11, 18, 27], "here": [2, 4, 5, 6, 9, 10, 12, 17, 24], "suffer": 2, "ideal": 2, "assumpt": [2, 9, 18, 21, 22, 24], "theoret": 2, "develop": 2, "yield": [2, 3, 4, 6, 9, 20, 21], "chapter": [3, 7, 11, 13, 18, 19, 26], "build": [3, 12, 24, 26, 27], "establish": [3, 26], "notion": [3, 6, 26, 27], "describ": [3, 6, 15, 16, 19, 21, 24, 26], "sever": [3, 9, 11, 13], "should": [3, 4, 6], "lack": 3, "necessarili": 3, "problem": [3, 4, 9, 10, 13, 14, 24, 26], "fundament": [3, 11], "A": [3, 4, 6, 7, 9, 10, 11, 12, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24], "relax": 3, "later": [3, 26, 27], "studi": [3, 14, 17, 24, 28], "hope": 3, "To": [3, 4, 6, 7, 9, 12, 17, 18, 19, 20, 21, 22, 24], "lenght": 3, "ell": [3, 9], "i_j": 3, "i_k": 3, "a_k": [3, 24], "superset": [3, 27], "both": [3, 7, 8, 21, 22, 24, 26, 27], "side": [3, 6, 8, 15, 17, 18, 21, 22, 27], "state": [3, 6, 14, 15, 17, 18, 21, 24, 27], "out": [3, 4, 6, 8, 9, 10, 18, 25, 26, 27], "true": [3, 4, 6, 8, 9, 15], "i_": 3, "doubli": 3, "index": [3, 8, 19, 20, 21, 24, 26], "singl": [3, 4, 6, 7, 12, 16, 20, 22, 24, 26], "3": [3, 4, 6, 7, 11, 12, 18, 22, 24, 27], "4": [3, 4, 6, 7, 11, 17, 24, 27], "want": [3, 4, 6, 7, 9, 10, 11, 22], "rather": [3, 4, 7, 22], "between": [3, 4, 6, 7, 9, 15, 16, 21, 22, 26], "independ": [3, 6, 7, 8, 9, 12, 18, 20, 21, 22], "interest": [3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], "beyond": [3, 25], "theori": [3, 14, 18, 24, 26], "statement": [3, 6, 7, 11, 12, 24], "c": [3, 6, 7, 10, 11, 17, 19, 20, 21, 22, 24, 27], "said": [3, 6, 12, 18, 21], "goe": [3, 6, 18, 24], "special": [3, 15, 16, 18, 19, 24, 26], "d": [3, 4, 6, 7, 9, 10, 12, 14, 15, 16, 18, 19, 21, 22, 23, 24], "g_j": 3, "induct": [3, 19, 26], "after": [3, 4, 10, 19, 24, 26, 27], "base": [3, 4, 11, 12, 18, 26], "assum": [3, 4, 8, 15, 16, 18, 21], "step": [3, 4, 6, 8, 9, 19, 20, 22, 24, 26, 27], "hypothesi": 3, "nice": [3, 6, 28], "interestingli": 3, "diagon": 3, "usual": [3, 4, 13], "inverv": 3, "distinct": [3, 24, 26], "nonzero": 3, "neg": [3, 4, 7, 9, 15, 17, 18, 19, 22], "allow": [3, 7, 9, 11, 15, 20, 26, 27], "reli": [3, 7], "y": [3, 6, 7, 12, 13, 14, 15, 16, 17, 19, 20, 22, 24, 26], "iff": [3, 11, 14, 18, 21, 22, 24], "detail": [3, 4, 7, 15], "reflex": [3, 22, 24], "symmetr": [3, 4, 20, 22, 24], "transit": [3, 4, 6, 20, 22, 24, 26, 27], "There": [3, 10, 12, 17, 21, 22, 24, 26], "mathtild": 3, "tild": [3, 4], "represent": 3, "uniqu": [3, 6, 8, 21, 22, 24], "inclus": [3, 13], "6": [3, 4, 7, 11, 27], "time": [3, 4, 6, 7, 9, 10, 12, 19, 20, 24, 26, 27], "reach": [3, 19, 22, 24, 25, 26, 27], "shortli": [3, 6, 7], "befor": [3, 4, 6, 20, 26], "context": [3, 7], "s_1": [3, 24, 27], "s_2": [3, 24], "s_k": [3, 20, 24], "s_n": [3, 18, 20, 24, 26], "highlight": [3, 4, 6], "separ": [3, 7, 9, 12, 24], "sens": [3, 4, 6, 10, 11, 17, 18, 26, 27], "were": [3, 6, 7, 26], "relev": 3, "observ": [3, 4, 6, 7, 8, 9, 10, 11, 12, 14], "bevaus": 3, "a_3": [3, 24], "repres": [3, 6, 7, 11, 19, 24, 26, 27], "clss": 3, "sequnec": [3, 4], "e_k": 3, "pair": [3, 7, 10, 16, 24, 27], "simpli": [3, 4, 7, 10, 14], "clear": [3, 7], "intersect": [3, 11, 19, 24, 26], "notin": 3, "circ": [3, 26], "complement": [3, 11, 24], "refer": [3, 11, 26], "delta_x": 3, "equat": [3, 4, 11, 17, 18, 19, 20, 21, 22, 24], "bore": 3, "empti": [3, 11, 24, 26], "fg": 3, "half": 3, "product": [3, 6, 9, 11, 14, 15, 18, 19], "f_k": [3, 20, 24], "simul": [4, 9], "distribut": [4, 6, 7, 9, 10, 17, 19, 21], "central": [4, 7, 9, 10, 12], "statist": [4, 8, 9, 12], "machin": [4, 7, 8, 9, 24, 26], "learn": [4, 7, 8, 9], "enabl": [4, 9, 11], "quantiti": [4, 6, 10, 11, 12, 14, 18, 19], "often": [3, 4, 6, 11, 12, 13, 14, 15, 16, 17, 18], "evalu": [4, 8, 9, 10, 16], "int": [4, 6, 7, 8, 9, 10, 15, 16, 17, 18], "dx": [4, 6, 8, 9, 15, 16, 17], "probabl": [4, 6, 7, 8, 16, 17, 20, 21, 22], "densiti": [4, 7, 8, 9, 17], "acccess": 4, "cumul": [4, 6], "easili": [4, 8, 9, 14, 15, 26], "draw": [4, 6, 7, 26], "invers": [4, 10], "transform": [4, 7, 17], "analyt": [4, 6, 9], "tractabl": [4, 9], "conjug": 4, "bayesian": [4, 9], "model": [4, 6, 7, 8, 9, 10, 12, 26, 27], "typic": [4, 7, 13], "involv": [4, 6, 9, 13, 17, 18, 27], "intract": [4, 8, 9], "kind": [4, 26, 27], "resort": [4, 8], "method": [4, 7, 9, 13], "mont": [4, 7, 9], "carlo": [4, 7, 9], "get": [4, 6, 7, 9, 17, 24, 26, 28], "around": [4, 6, 10], "inst": 4, "correct": [4, 6], "bia": 4, "account": [4, 27], "weigh": 4, "them": [4, 6, 14, 16, 23, 24, 26, 27, 28], "unbias": [4, 7], "downstream": [4, 13], "circumv": [4, 17], "unfortun": 4, "dissimilar": 4, "random": [4, 6, 8, 10, 16, 17, 18, 19, 21, 28], "neal": 4, "2001": [4, 6, 18, 21, 22], "procedur": [4, 24, 26, 27], "produc": [4, 7, 9, 10, 24], "remain": [4, 7, 12, 27], "greatli": 4, "wish": [4, 6, 18], "approx": [4, 7], "applic": [4, 6, 7, 9, 17, 27], "technic": [4, 17], "whenev": [4, 10, 12, 13, 15, 16, 17, 24], "hereaft": 4, "underbrac": [4, 26], "ratio": [4, 6], "contribut": [4, 6], "propos": 4, "commonli": [4, 6], "target": [4, 9], "ultim": 4, "origin": [3, 4, 18, 24, 27], "practic": [4, 7], "off": 4, "magnitud": 4, "factor": [4, 13, 17], "overal": 4, "cost": [4, 7, 10], "common": [4, 17, 18, 19], "aris": 4, "lot": [4, 23], "simpl": 4, "mixtur": 4, "gaussian": [4, 6, 7, 8, 10], "pi": [4, 7, 15, 17, 18, 20, 22, 24], "mu_1": 4, "sigma_1": [4, 19], "mu_2": 4, "sigma_2": [4, 19, 24], "Of": 4, "cours": [4, 25, 26], "pretend": 4, "mu_q": 4, "sigma_q": 4, "intergr": 4, "5": [4, 6, 7, 9, 11, 18, 26], "40": 4, "exact": [4, 6, 7], "antisymmetr": 4, "46": 4, "seem": 4, "bit": [4, 7, 24, 26], "trial": [4, 12, 20], "10": [4, 7, 24], "13": 4, "309": 4, "though": [4, 6, 7, 9, 26], "compar": [4, 6, 15, 24], "pick": [4, 9, 24], "how": [4, 6, 7, 9, 16, 19], "much": [4, 6, 7, 9, 16, 17, 26], "had": [4, 16], "access": [4, 6, 8, 28], "beat": 4, "07": [4, 7], "848": 4, "seven": 4, "larger": [4, 17, 24, 26], "occur": [4, 9, 11, 12, 13, 20, 21, 24, 27], "plot": [4, 7], "raw": 4, "drawn": [4, 7], "green": [4, 18], "accord": [4, 6, 7, 9, 12, 19, 24], "blue": [4, 18], "although": [4, 6, 9, 12, 22], "still": [4, 11, 24], "histogram": 4, "just": [3, 4, 6, 10, 15, 18, 26], "high": [4, 7], "becom": [4, 19, 26], "mould": 4, "empir": [4, 6, 8], "resembl": 4, "receiv": [4, 24], "rel": [4, 7], "infrequ": 4, "sometim": [4, 18, 27], "mai": [3, 4, 6, 7, 9, 11, 12, 14, 15, 16, 17, 18, 24, 26, 27], "mode": 4, "affect": [4, 6, 9], "domin": 4, "axi": [4, 6, 7, 9], "log": [4, 8, 9, 18, 21], "littl": 4, "make": [4, 6, 7, 9, 11, 12, 18, 19, 20, 24, 26, 27, 28], "integrand": [4, 6, 7], "smaller": [4, 7, 19], "amount": [4, 7, 18], "variabl": [4, 6, 7, 9, 10, 17, 18, 19, 21, 22, 27], "partricular": 4, "exponenti": [4, 7, 18, 21], "kl": 4, "diverg": [4, 9, 17, 22], "max": 4, "d_": 4, "kullback": 4, "leibler": 4, "diver": 4, "nat": 4, "jensen": 4, "exp": [4, 6, 7, 9, 15, 17, 18], "lemma": [4, 22, 24], "when": [4, 6, 9, 10, 12, 14, 15, 17, 18, 20, 24, 26, 27], "agreement": 4, "actual": 4, "flipsid": 4, "tell": 4, "ai": 4, "markov": [4, 8, 9, 18], "chain": [4, 9], "closer": [4, 9], "achiev": [4, 6, 8, 11, 17], "gradual": 4, "motiv": [3, 4], "intuit": [4, 8, 13, 17, 18, 26], "initi": [4, 6, 9, 19, 20, 21, 22, 24, 26], "gear": 4, "toward": 4, "type": [4, 19, 27], "initialis": [4, 9], "proce": [4, 12, 20], "acord": 4, "randomis": 4, "rule": [4, 10, 15, 26, 27], "principl": [4, 24, 26], "within": [4, 6, 8, 12, 17], "kernel": [4, 7, 9], "t_1": [4, 6, 21], "t_k": [4, 21], "return": [4, 6, 7, 9, 20, 22, 26], "chosen": [4, 6], "w": [4, 6, 7, 9, 15, 17, 24, 26, 27], "ergod": [4, 22], "intial": 4, "q_k": [4, 26], "dx_0": 4, "dx_": 4, "specifi": [4, 6, 12], "select": [4, 10, 26], "nest": 4, "extens": [4, 13, 14], "either": [4, 9, 18, 20, 22, 24, 26], "One": [4, 6, 7, 9, 10, 13, 14, 17, 18], "revers": [4, 24], "valid": [4, 11, 12, 16, 26, 27], "start": [4, 7, 11, 20, 22, 24, 26, 27], "_1": 4, "perform": [4, 7, 24], "augment": [4, 10], "ensur": [4, 9, 11, 27], "dx_k": 4, "crucial": [3, 4, 27], "cancel": [4, 17], "got": 4, "load": 4, "improv": [4, 24, 28], "modifi": [4, 24, 26], "better": [4, 10, 26], "advantag": 4, "beta_0": 4, "beta_k": 4, "pi_k": [4, 21], "interpol": [4, 17], "vari": [4, 17], "beta": [4, 9, 20], "except": [4, 10, 17, 22, 24, 26, 27], "beta_n": 4, "impoprt": 4, "pi_0": [4, 21], "pi_1": [4, 21], "pi_": [4, 20, 21], "acccord": 4, "margin": [4, 10, 13, 16, 21], "paramet": [4, 6, 7, 8, 9, 12, 14, 15, 17, 21], "metropoli": 4, "hast": 4, "itself": [4, 6, 9, 14, 18, 24, 26, 27], "confus": 4, "ll": [4, 6], "user": [4, 7], "transitionkernel": 4, "__init__": 4, "self": [4, 10, 24], "pass": [4, 9, 17, 24], "__call__": 4, "tf": [4, 9], "tensor": 4, "gaussiantransitionkernel": 4, "creat": [4, 26], "forward": [4, 20], "tfd": 4, "normal": [4, 6, 7, 8, 18], "loc": [4, 7], "next_x": 4, "accept": [4, 24], "log_prob_1": 4, "log_prob": 4, "log_prob_2": 4, "log_prob_ratio": 4, "math": 4, "reduce_min": 4, "reject": [4, 24, 26], "categor": 4, "num_sampl": 4, "dtype": [4, 9], "int32": 4, "x_accept": 4, "convert_to_tensor": [4, 9], "annealedimportancesampl": 4, "schedul": 4, "initial_distribut": 4, "target_distribut": 4, "transition_kernel": 4, "float": 4, "num_step": 4, "shape": [4, 6, 7, 9], "x0": [4, 6], "run": [4, 6, 9, 24, 26], "samples_and_log_weight": 4, "map_fn": 4, "run_chain": 4, "jit_compil": 4, "arg": 4, "histori": 4, "chain_histori": 4, "annealed_log_prob": 4, "log_w": 4, "next_annealed_log_prob": 4, "log_geometric_mixtur": 4, "float64": 4, "callabl": 4, "_log_geometric_mixtur": 4, "sampler": 4, "gamma_k": 4, "transition_scal": 4, "intialis": 4, "nn": 4, "sigmoid": 4, "cast": 4, "linspac": [4, 6, 7], "1e": 4, "1000": [4, 6], "visualis": [4, 7, 27], "plt": 4, "figur": 4, "figsiz": 4, "8": [4, 6], "x_plot": 4, "p_plot": 4, "color": 4, "tab": 4, "q_plot": 4, "hist": 4, "alpha": [4, 17, 20, 24], "bin": [4, 6], "zorder": 4, "label": [4, 26], "purpl": 4, "titl": 4, "fontsiz": 4, "22": 4, "xlabel": 4, "18": 4, "ylabel": 4, "xtick": 4, "np": [4, 6, 7], "ytick": 4, "xlim": 4, "ylim": 4, "legend": 4, "16": 4, "twin_axi": 4, "gca": 4, "twinx": 4, "f_plot": 4, "red": [4, 18], "60": 4, "bar": [4, 17, 26], "appear": [4, 6, 26, 27], "significantli": [4, 7], "chang": [4, 6, 9, 17, 26], "suggest": [4, 11, 26], "moost": 4, "verifi": [4, 6, 12, 13], "clearli": [4, 10, 17], "signific": 4, "impact": 4, "ve": 4, "far": [4, 26], "02": [], "198": [], "induc": [4, 7], "help": [4, 26], "address": 4, "iter": [4, 9, 19], "preserv": [4, 26], "radford": 4, "paper": [4, 6, 7, 26], "classic": 4, "worth": [4, 10, 17], "nea01": 4, "11": [4, 7, 18, 26], "125": 4, "139": [4, 7], "demo": 5, "literatur": 5, "style": 5, "recent": [5, 7], "top": [5, 7, 8, 9, 10, 24, 27], "ones": [5, 24, 26, 27], "bottom": [5, 24], "spot": [5, 25, 28], "feedback": 5, "feel": [5, 28], "free": [5, 28], "reproduct": 6, "script": 6, "found": [6, 18, 23], "higham": 6, "algorithm": [6, 7, 9, 24, 26], "introduct": [6, 18, 24], "center": 6, "exclud": 6, "linear": [6, 7, 17], "stabil": 6, "supplementari": 6, "system": [6, 21], "wherea": [6, 10, 14, 15, 21], "ordinari": 6, "od": 6, "determinist": [6, 26], "govern": 6, "partli": 6, "compon": 6, "dynam": 6, "fine": 6, "grain": 6, "complex": [6, 7, 26], "afford": 6, "nois": [6, 7], "purpos": [6, 7, 9], "depend": [6, 8, 9, 10, 13, 22], "t_2": 6, "t_3": 6, "t_4": 6, "perp": [6, 21], "imagin": 6, "path": [6, 26], "particl": [6, 9], "experi": [6, 11], "infinitesim": [6, 12], "kick": 6, "diminish": 6, "futur": [6, 19, 21], "past": [6, 21], "present": [6, 7, 8, 9, 11, 12, 15, 17, 18, 21], "instanc": 6, "t_n": 6, "t_": [6, 21], "t_0": [6, 21], "seed": 6, "500": 6, "dt": [6, 12, 17], "none": [6, 7, 9, 26], "dw": 6, "concaten": [6, 7], "cumsum": 6, "entireti": 6, "deviat": 6, "discretis": 6, "level": [6, 17], "x_mean": 6, "x_stdev": 6, "var": [6, 7, 12, 17, 18, 19], "thing": [6, 27, 28], "1_0": [6, 15], "b_a": [6, 15], "matter": 6, "lambda": [6, 12, 14, 15, 17, 18, 20, 21, 22], "choic": 6, "behav": [6, 16], "widespread": 6, "stratonovich": 6, "midpoint": 6, "w_t": 6, "dw_t": 6, "moment": [6, 15, 18, 21], "w_": [6, 27], "varianc": [6, 17, 18, 19], "fourth": 6, "o": [6, 7, 12, 18, 21, 24], "summand": [6, 16], "contrast": [6, 24], "z_n": [6, 18, 21], "big": [6, 7, 8, 9, 18, 19], "419": 6, "415": 6, "917": 6, "915": 6, "vanish": 6, "implic": [6, 18, 22], "onward": 6, "exclus": [6, 13], "ammen": 6, "scalar": [6, 9], "drift": 6, "diffus": 6, "implement": 6, "em": 6, "euler_maruyama": 6, "advanc": 6, "store": 6, "new": [6, 19, 24, 26, 27], "known": [6, 12, 14, 24], "black": 6, "schole": 6, "closur": [6, 24], "f_g_black_schol": 6, "lamda": 6, "grad": 6, "fals": 6, "els": 6, "associ": [6, 10, 11, 12], "x_t": [6, 19, 22], "exact_black_schol": 6, "unlik": [6, 9, 15, 17, 18], "rememb": 6, "share": 6, "aginst": 6, "accuraci": 6, "adjust": [6, 11], "fun": 6, "asid": 6, "try": [3, 6], "omega": [6, 7, 11, 12, 13, 14, 15, 16, 17, 19, 22], "co": [6, 7, 17], "sin": 6, "perturb": 6, "f_g_sine": 6, "quickli": [6, 7, 17, 19], "disctinct": 6, "senc": 6, "gamma": [6, 27], "tau_n": 6, "rate": [6, 9, 21], "weaker": [6, 18], "without": [6, 7, 8, 24], "w_j": 6, "tau_j": 6, "did": 6, "opos": 6, "variou": 6, "plug": 6, "altern": [6, 15, 18, 19, 21], "evolut": [6, 21], "dv": 6, "autonom": 6, "dx_t": 6, "u_t": 6, "h_t": 6, "squar": [6, 17, 19], "twice": [6, 24], "y_t": 6, "dy_t": 6, "partial": [6, 8, 11, 16, 18, 21, 22], "v_t": 6, "formal": [6, 24, 26], "oksend": 6, "1992": 6, "44": 6, "48": 6, "sketch": 6, "taylor": [6, 14, 18], "being": [6, 7, 8, 13, 16, 27], "ommit": [6, 18], "bracket": [6, 8], "neglect": 6, "u_th_t": 6, "bigg": [6, 7, 19], "vert_": [6, 19], "h_": [6, 10], "dw_": 6, "hig01": 6, "siam": 6, "43": 6, "525": 6, "546": 6, "oks92": 6, "bernt": 6, "3rd": 6, "ed": 6, "springer": [6, 7], "verlag": 6, "berlin": 6, "heidelberg": 6, "isbn": 6, "3387533354": 6, "difficulti": [7, 17], "process": [7, 14, 18, 20], "gp": [7, 10], "support": 7, "svm": 7, "cubic": [7, 24], "datapoint": 7, "prohibit": 7, "modestli": 7, "dataset": 7, "wealth": 7, "option": 7, "rahimi": 7, "et": [7, 9, 18, 23], "al": [7, 9, 18, 23], "2007": 7, "stationari": 7, "effici": [7, 9], "min": [7, 22], "covari": 7, "easi": [7, 9], "frequenc": 7, "slightli": [7, 10, 11, 24], "abus": 7, "symbol": [7, 24, 26, 27], "explicitli": [7, 8], "zeta_": 7, "resolv": [7, 9], "re": [7, 27], "manipul": [7, 16], "interpret": 7, "clarifi": [7, 10], "phi": [7, 9, 17, 18], "2b": 7, "z_": [7, 8, 18], "omega_m": 7, "phi_m": 7, "lower": [7, 17], "averag": [7, 8, 12, 19], "omega_1": 7, "phi_1": [7, 18], "ident": [7, 9, 12, 14, 18], "regressor": 7, "question": [7, 9, 10, 12], "word": [3, 7, 8, 10], "grimmett": [7, 18, 21, 22, 23], "2020": 7, "obei": 7, "input": [7, 10, 24, 26, 27], "decai": 7, "whole": [7, 10, 11], "stronger": 7, "compact": 7, "eq": [7, 9], "laplac": 7, "cauchi": 7, "sample_rff": 7, "lengthscal": [7, 9], "coeffici": [7, 9, 14], "num_funct": 7, "num_featur": 7, "dimens": 7, "data": [7, 8, 12], "x_dim": 7, "omega_shap": 7, "elif": 7, "standard_cauchi": 7, "weight": [7, 12], "low": 7, "einsum": 7, "sfd": 7, "nd": 7, "sfn": 7, "sf": 7, "sn": 7, "200": 7, "locat": [7, 9], "toi": 7, "noisi": 7, "sinusoid": 7, "gap": 7, "qualiti": 7, "uncertainti": 7, "purposefulli": 7, "5000": 7, "quit": [7, 9], "slow": 7, "rff_posterior": 7, "randomli": 7, "bishop": 7, "prml": 7, "2006": 7, "x_data": 7, "y_data": 7, "x_pred": 7, "num_data": 7, "x_full": 7, "features_pr": 7, "features_data": 7, "iS": 7, "ey": 7, "mean_pr": 7, "linalg": 7, "var_pr": 7, "fn": 7, "helper": 7, "exact_gp_posterior": 7, "rasmussen": 7, "2003": 7, "x1": 7, "x2": 7, "diff": [7, 9], "l2": 7, "cov": [7, 17], "l1": 7, "ab": [7, 17, 24, 26], "kdd": 7, "kpd": 7, "kpp": 7, "diag": 7, "milisecond": 7, "execut": 7, "oppos": 7, "longer": [7, 24], "cpu": 7, "sy": 7, "17": [], "total": [7, 12, 19], "12": [], "wall": 7, "181": [], "ms": 7, "91": [], "272": [], "68": [], "sensibl": [7, 11, 15], "faster": [7, 9], "posterior": [7, 9], "roughli": 7, "match": [7, 14], "quicker": 7, "fint": 7, "basi": 7, "degre": [7, 15], "freedom": [7, 15], "situat": 7, "pin": 7, "clump": 7, "signiticantli": 7, "speedup": 7, "overfit": 7, "allevi": 7, "defeat": 7, "cheap": [7, 9], "nm": 7, "wilson": 7, "spars": 7, "train": [7, 8], "bis06": 7, "christoph": 7, "pattern": 7, "recognit": 7, "gri20": 7, "david": 7, "geoffrei": 7, "stirzak": [7, 18, 21, 22], "oxford": [7, 18, 23], "univers": [7, 18, 23], "press": [7, 18, 23], "rr": 7, "ali": 7, "benjamin": 7, "recht": 7, "nip": 7, "ras03": 7, "carl": 7, "edward": 7, "summer": 7, "school": 7, "63": 7, "71": 7, "wbt": 7, "20": 7, "jame": 7, "viacheslav": 7, "borovitskii": 7, "alexand": 7, "terenin": 7, "peter": [7, 8], "mostowski": 7, "marc": 7, "deisenroth": 7, "due": 8, "hyvarinen": 8, "hyv": 8, "\u00e4": 8, "rinen": 8, "dayan": 8, "2005": 8, "probabilist": 8, "likelihood": 8, "theta": 8, "q_": [8, 9, 24, 26], "normalis": [8, 12, 15, 21], "field": [8, 9], "notic": 8, "gradient": 8, "elimin": [8, 27], "nabla": [8, 9], "psi_": 8, "p_d": 8, "psi_d": 8, "almost": 8, "formalis": [8, 17, 27], "maximum": [8, 24], "Is": [8, 10, 11, 21], "substitut": [8, 17, 19, 20, 27], "const": 8, "propto": 8, "confirm": 8, "hypothesis": 8, "behaviour": [8, 19, 22], "recov": 8, "idealis": 8, "challeng": [8, 9, 10, 26], "expand": [8, 27], "norm": 8, "latter": [8, 18, 27], "irrelev": 8, "optimis": [8, 9], "inaccess": 8, "rewritten": [8, 17], "differenti": [8, 17, 21], "weak": 8, "regular": [8, 24, 27], "writtten": 8, "partial_i": 8, "subscript": [8, 9, 10, 19], "entri": [8, 10, 24], "replac": [8, 24, 27], "sampl": [8, 9, 10, 15], "hyvarinend05": 8, "aapo": 8, "journal": 8, "research": 8, "complic": [9, 11], "difficult": 9, "neural": 9, "network": 9, "great": [9, 23], "devis": 9, "broadli": 9, "categori": 9, "infer": 9, "vi": 9, "mcmc": 9, "focu": 9, "former": [9, 18, 27], "seek": 9, "constrain": [9, 20], "famili": [9, 19], "metric": [9, 17], "hopefulli": [9, 18], "decent": 9, "aspect": [9, 14], "liu": 9, "wang": 9, "2019": 9, "wihtout": 9, "constraint": [9, 20], "minimis": [9, 18], "heavi": 9, "evolv": [9, 19], "bring": 9, "restrict": [9, 22], "rapidli": 9, "map": [9, 10, 11, 12, 16, 17, 24], "smooth": 9, "nabla_": 9, "trace": 9, "_p": 9, "nabla_x": 9, "dz": [9, 15], "conveni": [3, 9, 13], "det": 9, "computation": 9, "version": [9, 13, 15, 18, 21, 22, 24], "reproduc": 9, "hilbert": 9, "rkh": 9, "inner": 9, "langl": 9, "rangle_": 9, "_d": 9, "dimension": [9, 10], "f_d": 9, "g_d": 9, "2016": 9, "maximis": [9, 17], "beta_d": 9, "x_d": 9, "rangl": 9, "_q": 9, "proport": [9, 18], "postiv": 9, "_n": [9, 21, 26], "x_m": [9, 22], "surprisingli": [9, 26], "semidefinit": 9, "attent": 9, "svgd_grad": 9, "tensorflow": 9, "batch": 9, "jacobian": 9, "quad": 9, "reduce_sum": 9, "logprob": 9, "float32": 9, "gradienttap": 9, "persist": 9, "tape": 9, "watch": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 24, 25, 26, 27, 28], "logp": 9, "dlogp": 9, "dk": 9, "batch_jacobian": 9, "svg": 9, "modest": 9, "bimod": 9, "someth": [9, 10], "stuck": 9, "local": [9, 12], "optimum": 9, "guarante": [9, 10, 26, 27], "regard": 9, "flexibl": 9, "llj16": 9, "qiang": 9, "jason": 9, "lee": 9, "michael": [9, 25], "jordan": 9, "discrep": 9, "fit": 9, "test": 9, "intern": 9, "confer": 9, "276": 9, "284": 9, "pmlr": 9, "lw19": 9, "dilin": 9, "arxiv": 9, "1608": 9, "04471": 9, "calculu": 11, "outcom": [11, 12, 15, 16], "member": [11, 24], "elementari": [11, 12], "die": 11, "toss": [11, 12], "experiment": [11, 12], "atom": [11, 26], "natur": [11, 12, 19], "bigcup": [11, 13, 19], "infty_": [11, 14, 15, 16, 17, 19, 20, 21, 22], "a_i": [11, 22, 24, 27], "consequ": [11, 14, 17], "assign": [11, 12], "triplet": 11, "object": 11, "basic": [11, 15], "belief": [11, 12], "updat": [11, 12], "divis": [11, 21, 24], "never": [10, 11], "meaningless": 11, "condition": [11, 20], "calcul": [11, 13], "easier": [11, 26], "b_1": [11, 12, 20, 24, 26], "b_2": [11, 12, 20], "b_n": [11, 20, 26], "sum_n": [11, 13], "experss": 11, "b_k": [11, 12, 20, 24], "summari": 12, "event": [12, 13, 16, 19, 20, 21, 22], "profit": 12, "gambl": 12, "game": 12, "statemet": 12, "p_x": [12, 13, 15], "shorthand": [12, 26], "rigor": 12, "construct": [12, 26, 27], "declar": 12, "s_i": [12, 24, 27], "pi_i": [12, 22], "collectioin": 12, "powerset": 12, "appeal": 12, "forget": 12, "coin": 12, "simplest": 12, "paramt": 12, "buse": 12, "stop": [12, 22], "bu": 12, "pq": [12, 20], "until": [12, 24, 26, 27], "head": [10, 12], "success": 12, "failur": 12, "nq": 12, "count": [12, 13], "perfectli": 12, "grant": 12, "appart": 12, "particularli": 12, "spread": 12, "sum_k": 12, "univari": 13, "abbrevi": 13, "marginalis": [10, 13], "simplifi": [13, 16, 26], "previous": [13, 16, 27], "concept": [13, 26], "p_y": 13, "xy": [13, 24, 26], "tool": [13, 14, 17, 18], "1_": 13, "1_a": 13, "a_": [13, 20, 27], "n_1": [10, 13], "n_2": 13, "bigcap_n": 13, "prod_": [13, 21], "discret": [14, 15, 16, 19], "mass": 14, "vice": 14, "versa": 14, "straightforwardli": 14, "u_0": [14, 20], "g_x": 14, "p_0": [14, 21], "pmf": [14, 15, 16, 19], "g_y": 14, "ps": 14, "qs": 14, "summaris": 14, "higher": 14, "g_": [14, 19, 26], "against": 14, "inspect": 14, "especi": 14, "branch": 14, "uncount": 15, "f_x": [15, 16], "rough": 15, "counterpart": [15, 16], "x_w": 15, "convolut": 15, "f_": [15, 16, 22, 24], "volum": [3, 15], "strictli": [15, 17, 18], "speak": 15, "modulo": 15, "f_y": [15, 16], "dy": [15, 16, 21], "sign": [15, 17], "front": 15, "treat": [15, 19], "analogu": [15, 16], "xf_x": 15, "law": [15, 19], "subconsci": 15, "statistician": 15, "straightforward": 15, "accur": 15, "simultan": 16, "y_1": [10, 16, 18, 22, 24], "y_2": [16, 18], "unrel": 16, "consider": 16, "jointli": 16, "f_z": 16, "biject": 16, "vmatrix": 16, "invert": [10, 16], "worri": 16, "broader": 17, "extent": 17, "quantifi": 17, "multipli": [17, 22], "rho": [17, 21], "bear": 17, "mind": 17, "uv": [17, 27], "root": [17, 19], "su": 17, "quadrat": 17, "4ac": 17, "m_x": 17, "tx": [17, 18], "neighbourhood": [17, 18], "m_": [10, 17, 18], "m_y": 17, "seen": 17, "2t": [17, 19], "threshold": 17, "chebyshev": 17, "kei": [3, 17, 26], "concav": 17, "tu": 17, "flip": 17, "l_w": 17, "r_w": 17, "trivial": [10, 17, 19], "phi_x": 17, "itx": 17, "phi_i": 17, "ax": [17, 18], "phi_z": 17, "itb": 17, "phi_": [17, 21], "itz": 17, "itax": 17, "iti": 17, "radoom": 17, "pdf": [17, 22], "fourier": 17, "meaning": 18, "du": 18, "m_1": [18, 24, 26], "m_2": [18, 24, 26], "m_n": 18, "tz_n": 18, "m_u": 18, "ts_n": 18, "tan": 18, "logarithm": 18, "weakli": 18, "criterion": [18, 26], "avoid": [18, 21], "textbook": [18, 21, 25], "1986": [18, 23], "switch": 18, "role": 18, "diagram": [18, 26], "yellow": 18, "pink": 18, "region": 18, "orang": 18, "white": 18, "z_0": 18, "presenc": 18, "darker": 18, "border": 18, "indic": [18, 26], "cyan": 18, "explan": 18, "coverg": 18, "phi_2": 18, "phi_n": 18, "gww86": [18, 23], "welsh": [18, 23], "clarendon": [18, 23], "gs01": 18, "391": 18, "brief": 19, "digress": 19, "nomad": 19, "At": [19, 24], "di": 19, "birth": 19, "descend": 19, "p_k": [19, 21], "neat": 19, "g_0": 19, "g_t": 19, "proabil": 19, "born": 19, "pgf": [19, 21], "surpris": 19, "ds": 19, "ever": [19, 20], "e_t": 19, "answer": [10, 19, 24], "e_0": [3, 19], "eta": 19, "necessari": 19, "surviv": 19, "radiu": 19, "convex": 19, "graph": [10, 19], "intesect": 19, "strict": [19, 27], "sigma_": [10, 19, 26, 27], "proceed": [19, 21, 22], "sigma_t": 19, "geometr": [19, 22], "stochast": [20, 21, 22], "s_": [20, 24, 27], "s_0": [20, 27], "asymmetr": 20, "2m": [20, 26], "odd": 20, "backward": 20, "foward": 20, "henc": 20, "u_": [20, 27], "transient": [20, 22], "revisit": 20, "eventu": 20, "u_m": 20, "4pq": 20, "gambler": 20, "ruin": 20, "absorb": [20, 22], "barrier": 20, "boundari": [20, 21], "unconstrain": 20, "alreadi": [20, 24, 26, 27], "n_t": 21, "n_0": 21, "nondecreas": 21, "z_1": 21, "z_2": 21, "b_": [21, 26], "bernoulli": 21, "tupl": [21, 26, 27], "nh": 21, "distrbut": 21, "characterist": 21, "iub_": 21, "iu": 21, "adapt": 21, "dure": [21, 24], "monoton": 21, "m_t": 21, "popul": 21, "m_0": 21, "organ": 21, "subtract": [3, 21], "p_i": 21, "l_t": 21, "activ": 21, "l_0": 21, "extinct": 21, "q_t": 21, "custom": 21, "queu": 21, "q_0": [21, 24, 26, 27], "manner": 21, "servic": 21, "steadi": 21, "pi_2": 21, "homogeneu": 22, "lambda_i": 22, "homogen": 22, "inhomogen": 22, "factoris": 22, "lambda_": 22, "chapman": 22, "kolmogorov": 22, "holmogorov": 22, "mahtbb": 22, "commun": 22, "leftrightarrow": 22, "irreduc": 22, "passag": 22, "probabilit": 22, "t_j": 22, "recurr": 22, "delta_": [22, 24], "gen": 22, "func": 22, "transienc": 22, "belong": 22, "polya": 22, "hit": 22, "absorpt": 22, "earliest": [22, 26], "minim": 22, "h_j": 22, "k_i": 22, "h_i": 22, "k_j": 22, "y_0": 22, "y_k": 22, "care": 22, "visit": 22, "v_i": 22, "t_i": 22, "hspace": 22, "1cm": 22, "mu_i": 22, "null": 22, "period": 22, "d_i": 22, "gcd": 22, "aperiod": [22, 24], "pi_j": 22, "irrespect": 22, "y_n": [10, 22], "hat": 22, "matric": [10, 22], "statisfi": 22, "connect": [22, 26], "pi_v": 22, "meant": 23, "condens": 23, "format": [23, 28], "mistak": [23, 24, 25], "mine": 23, "sipser": [24, 25], "dfa": [24, 26, 27], "aabb": 24, "string": [24, 27], "q_1": [24, 26], "q_2": [24, 26], "q_4": 24, "q_3": 24, "finish": 24, "fsa": 24, "delta_1": [24, 26], "delta_2": [24, 26], "nfa": [24, 27], "convert": [24, 27], "singla": 24, "languag": 24, "ba": 24, "aaa": 24, "aba": [24, 26], "bab": 24, "bb": 24, "abab": 24, "aa": [24, 26], "abba": 24, "recognis": [24, 27], "nondeterminist": 24, "sigma_3": 24, "column": [10, 24], "row": [10, 24], "keep": [24, 28], "track": [24, 28], "carri": 24, "oper": 24, "q_i": [24, 26], "mod": 24, "check": 24, "3a_1": 24, "q_e": 24, "q_l": 24, "perfect": 24, "shuffl": 24, "b_i": 24, "m_a": 24, "q_a": [24, 26], "delta_a": 24, "f_a": 24, "q_b": 24, "delta_b": 24, "f_b": 24, "texttt": [24, 27], "dropout": 24, "remov": [24, 26, 27], "xz": 24, "xyz": [24, 26], "copi": 24, "overset": 24, "m_b": 24, "m_c": 24, "loop": 24, "wx": 24, "reachabl": 24, "palindrom": 24, "wtw": 24, "pump": 24, "nz": [24, 26], "unequ": 24, "trail": 24, "essenti": 24, "a_4": 24, "nk": 24, "wt": 24, "2p": 24, "3z": 24, "xw_1": 24, "w_2w_1": 24, "w_2z": 24, "substr": [24, 26, 27], "2z": 24, "01": 24, "distinguish": 24, "wherebi": 24, "yz": 24, "indistinguish": 24, "equiv_l": 24, "reflexivti": 24, "symmetri": 24, "zx": 24, "zy": 24, "supos": 24, "wz": 24, "pairwis": 24, "moreov": 24, "greater": [24, 26], "pigeonhol": [24, 26], "indistiguish": 24, "beacus": 24, "s_j": 24, "alphabet": [24, 26, 27], "xa": 24, "regardless": [10, 24], "ya": 24, "outsid": 24, "\u010dern\u00fd": 24, "who": 24, "conjectur": 24, "synchronis": 24, "shitov": 24, "1654": 24, "eppstein": 24, "gave": 24, "polynomi": 24, "trahtman": 24, "home": 24, "q_j": [24, 26], "shorten": 24, "fed": 24, "ij": [10, 24], "marker": 24, "enter": [24, 26], "stai": 24, "join": [24, 26], "split": 24, "rest": 24, "q_n": 24, "rotat": 24, "rc": 24, "yx": 24, "cyclic": 24, "permut": 24, "q_m": 24, "add": [24, 27], "individu": 24, "break": [24, 26], "stage": 24, "x_p": 24, "suffix": 24, "termin": [24, 26, 27], "y_q": 24, "prefix": 24, "conclus": 24, "threfor": 24, "lectur": 25, "video": 25, "record": 25, "fault": 25, "slowli": 26, "abstract": 26, "memori": 26, "circl": 26, "arrow": 26, "mark": 26, "init": 26, "doubl": 26, "r_0": [26, 27], "b_0": 26, "_s": 26, "swap": 26, "feed": 26, "b_m": 26, "_m": 26, "myhil": 26, "nerod": 26, "unari": 26, "facilit": 26, "parallel": 26, "recur": 26, "theme": 26, "across": 26, "outgo": 26, "whether": [10, 26], "abb": 26, "aab": 26, "rabin": 26, "scott": 26, "1959": 26, "decis": 26, "scienc": 26, "perhap": [10, 26], "liter": 26, "view": 26, "old": 26, "aforement": 26, "composit": 26, "gnfa": 26, "w_k": 26, "main": 26, "increment": 26, "annot": 26, "repeatedli": 26, "g_k": 26, "output": 26, "r_1r_2": 26, "r_3": 26, "r_4": 26, "effect": 26, "repetit": 26, "vacuous": 26, "recogns": 26, "q_0q_1": 26, "correspondng": 26, "cgg": 27, "terminolog": [3, 27], "onto": 27, "uav": 27, "uwv": 27, "equiv": 27, "coupl": 27, "pars": 27, "tree": 27, "node": [10, 27], "edg": [10, 27], "0011": 27, "parser": 27, "program": 27, "succinctli": 27, "inher": 27, "bc": 27, "permit": 27, "unit": 27, "proper": 27, "occurr": 27, "occcur": 27, "delet": 27, "uavaw": 27, "uvaw": 27, "uavw": 27, "uvw": 27, "unless": 27, "rull": 27, "u_i": 27, "preceed": 27, "nondetermin": 27, "somewhat": 27, "stack": 27, "gamma_": 27, "funciton": 27, "acccept": 27, "w_1w_2": 27, "w_m": 27, "w_i": 27, "r_m": 27, "s_m": 27, "bt": 27, "uvxyz": 27, "ixi": 27, "iz": 27, "vy": 27, "vxy": 27, "k1": 27, "k2": 27, "andd": 27, "push": 27, "pop": 27, "star": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 24, 25, 27, 28], "welcom": 28, "walk": 28, "maintain": 28, "websit": 28, "primarili": 28, "myself": 28, "anywher": 28, "upgrad": 28, "yet": 28, "soon": 28, "transfer": 28, "couldn": 10, "wrap": 10, "cut": 10, "don": 10, "y_": 10, "repsect": 10, "dy_": 10, "boldsymbol": 10, "multivari": 10, "phantom": 10, "pmatrix": 10, "mbc": 10, "topm": [], "oberv": 10, "inconsist": 10, "wise": 10, "global": 10, "subtler": 10, "wrong": 10, "submatrix": 10, "queri": 10, "n_l": 10, "n_i": 10, "defint": 10, "master": 10, "expens": 10, "nevertheless": 10, "structur": 10, "came": 3, "generalis": 3, "additv": 3, "tripl": 3, "d_1": 3, "d_k": 3, "d_2": 3, "e_j": 3, "41": [], "35": [], "223": [], "151": [], "374": [], "110": [], "30": 4, "218": 4, "33": 7, "9": 7, "29": 7, "237": 7, "375": 7, "96": 7}, "objects": {}, "objtypes": {}, "objnames": {}, "titleterms": {"exercis": [0, 24], "chapter": [0, 24], "1": [0, 17, 24], "A": [0, 2, 26, 27], "2": [0, 24], "3": 0, "4": 0, "5": 0, "6": 0, "7": 0, "8": 0, "9": 0, "10": 0, "c": [0, 18], "11": [0, 24], "12": 0, "d": 0, "masur": 1, "integr": [1, 2, 6], "real": 1, "analysi": 1, "riemann": 2, "partit": [2, 11, 12], "infimum": [2, 3], "supremum": [2, 3], "upper": 2, "lower": [2, 4], "sum": [2, 13, 14, 16, 17], "inequ": [2, 17, 18], "leq": 2, "continu": [2, 3, 15, 16, 18, 21], "function": [2, 3, 6, 10, 12, 13, 14, 15, 16, 17, 18, 19], "ar": [2, 3], "bound": [2, 4], "defici": 2, "doe": 2, "work": 2, "unbound": 2, "limit": [2, 3, 18], "pointwis": [2, 3], "interchang": 2, "measur": [3, 11], "outer": 3, "definit": [3, 13, 14], "length": 3, "an": [3, 23], "open": 3, "interv": 3, "good": 3, "properti": [3, 15, 17, 21, 22, 26], "countabl": 3, "set": 3, "have": 3, "zero": 3, "preserv": 3, "order": [3, 6], "translat": 3, "invari": [3, 22], "subaddit": 3, "hein": 3, "borel": 3, "theorem": [3, 7, 11, 12, 17, 18, 24], "cover": 3, "finit": [3, 26], "subcov": 3, "close": [3, 27], "nontrivi": 3, "uncount": 3, "nonaddit": 3, "ration": 3, "differ": 3, "equival": [3, 8], "relat": 3, "addit": 3, "contain": 3, "disjoint": 3, "space": [3, 11, 12], "nonexist": 3, "extens": 3, "all": 3, "subset": 3, "mathbb": 3, "r": 3, "sigma": 3, "algebra": 3, "other": 3, "smallest": 3, "collect": 3, "invers": [3, 17], "imag": 3, "composit": 3, "condit": [3, 11, 12, 16], "everi": 3, "increas": 3, "oper": [3, 26], "s": [3, 6, 7, 17, 18], "anneal": 4, "import": 4, "sampl": [4, 6, 7, 11], "weight": 4, "varianc": [4, 7, 12], "mcmc": 4, "algorithm": 4, "implement": [4, 7, 9], "toi": 4, "experi": 4, "conclus": [4, 7, 9], "refer": [4, 6, 7, 8, 9, 18, 19, 21, 22, 23], "stream": 5, "numer": 6, "simul": 6, "sde": 6, "why": [6, 10], "stochast": [6, 19], "differenti": 6, "equat": 6, "The": [6, 7, 8, 21], "wiener": 6, "process": [6, 19, 21], "from": [6, 7, 14], "evalu": 6, "euler": 6, "maruyama": 6, "method": 6, "strong": [6, 22], "weak": [6, 18], "converg": [6, 7, 18, 22], "milstein": 6, "higher": 6, "chain": [6, 22], "rule": [6, 11], "ito": 6, "result": [6, 12], "one": 6, "dimens": 6, "random": [7, 12, 13, 14, 15, 20, 22], "fourier": 7, "featur": 7, "rff": 7, "approxim": [7, 9], "bochner": 7, "bayesian": 7, "regress": 7, "rate": 7, "hoeffd": 7, "uniform": [7, 15, 17], "prior": 7, "starvat": 7, "estim": 8, "score": 8, "match": 8, "trick": 8, "object": 8, "iff": [8, 13, 16], "distribut": [8, 12, 13, 14, 15, 16, 18, 22], "form": [8, 27], "j": 8, "stein": 9, "variat": 9, "gradient": 9, "descent": 9, "deriv": [9, 14, 17, 27], "svgd": 9, "invert": 9, "transform": [9, 18], "direct": 9, "steepest": 9, "proof": 9, "kl": 9, "ksd": 9, "empir": 9, "demo": 9, "mixtur": 9, "gaussian": 9, "failur": 9, "mode": 9, "event": 11, "probabl": [11, 12, 13, 14, 15, 18, 19, 23], "independ": [11, 13, 14, 16, 17], "probabiil": 11, "bay": 11, "discret": [12, 13], "variabl": [12, 13, 14, 15, 16], "mass": [12, 13], "pmf": [12, 13], "impli": [12, 14, 17, 18, 26], "fundament": 12, "bernoulli": [12, 14], "binomi": [12, 14], "poisson": [12, 14, 21], "geometr": [12, 14], "neg": [12, 14], "expect": [12, 13, 15, 16], "law": [12, 13, 16, 18], "subconsci": [12, 13, 16], "statistician": [12, 13, 16], "two": [12, 17], "multivari": [13, 16], "joint": [13, 16], "factoris": [13, 14, 16, 17], "product": [13, 16], "convolut": [13, 16], "formula": [13, 14, 16], "indic": 13, "gener": [14, 17, 19, 27], "uniqu": [14, 17], "pgf": 14, "exampl": [14, 17, 27], "moment": [14, 17], "g": 14, "densiti": [15, 16], "exponenti": [15, 17], "normal": [15, 17, 27], "cauchi": [15, 17], "gamma": [15, 17], "beta": 15, "chi": 15, "squar": [15, 18], "pdf": [15, 16], "chang": 16, "jacobian": 16, "iter": 16, "covari": [10, 17], "correl": 17, "coeffici": 17, "between": 17, "schwartz": 17, "equal": 17, "mgf": [17, 18], "markov": [17, 22], "jensen": 17, "convex": 17, "support": 17, "tangent": 17, "characterist": [17, 18], "main": 18, "mean": [18, 19], "larg": 18, "number": 18, "chebyshev": 18, "central": 18, "deviat": 18, "fenchel": 18, "legendr": 18, "branch": 19, "branc": 19, "popul": 19, "ultim": 19, "extinct": 19, "walk": [20, 22], "simpl": [20, 21], "recurr": 20, "transienc": 20, "absorpt": 20, "time": [21, 22], "arriv": 21, "inter": 21, "lack": 21, "memori": 21, "birth": 21, "death": 21, "first": 21, "come": 21, "serv": 21, "queue": 21, "classif": 22, "state": [22, 26], "equilibrium": 22, "revers": 22, "graph": 22, "introduct": 23, "excercis": 24, "20": 24, "31": 24, "32": 24, "33": 24, "34": 24, "41": 24, "43": 24, "44": 24, "45": 24, "46": 24, "47": 24, "48": 24, "51": 24, "52": 24, "myhil": 24, "nerod": 24, "59": 24, "63": 24, "67": 24, "theori": 25, "comput": 25, "automata": [26, 27], "regular": 26, "express": [26, 27], "automaton": [26, 27], "fsa": 26, "string": 26, "languag": [26, 27], "accept": [26, 27], "recognis": 26, "some": 26, "closur": 26, "union": [3, 26], "under": [26, 27], "nondetermin": 26, "nondeterminist": 26, "nfa": 26, "concaten": 26, "star": 26, "equiv": 26, "yield": [26, 27], "generalis": 26, "can": 26, "written": 26, "texttt": 26, "convert": 26, "laguag": 26, "pump": [26, 27], "lemma": [26, 27], "pda": 27, "context": 27, "free": 27, "grammar": 27, "cfg": 27, "mathemat": 27, "leftmost": 27, "ambigu": 27, "chomski": 27, "cfl": 27, "pushdown": 27, "non": 27, "intersect": 27, "home": 28, "precis": 10, "consist": 10, "infti": 3, "suffici": 3, "sequenc": 3, "paper": 5}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinxcontrib.bibtex": 9, "sphinx": 56}}) \ No newline at end of file +Search.setIndex({"docnames": ["book/mira/000-exercises", "book/mira/000-intro", "book/mira/001-riemann", "book/mira/002-measures", "book/papers/ais/ais", "book/papers/intro", "book/papers/num-sde/num-sde", "book/papers/rff/rff", "book/papers/score-matching/score-matching", "book/papers/svgd/svgd", "book/papers/why-covariances/why-covariances", "book/prob-intro/ch01/content", "book/prob-intro/ch02/content", "book/prob-intro/ch03/content", "book/prob-intro/ch04/content", "book/prob-intro/ch05/content", "book/prob-intro/ch06/content", "book/prob-intro/ch07/content", "book/prob-intro/ch08/content", "book/prob-intro/ch09/content", "book/prob-intro/ch10/content", "book/prob-intro/ch11/content", "book/prob-intro/ch12/content", "book/prob-intro/intro", "book/toc/000-exercises", "book/toc/000-intro", "book/toc/001-fsa", "book/toc/002-cfl", "intro"], "filenames": ["book/mira/000-exercises.md", "book/mira/000-intro.md", "book/mira/001-riemann.md", "book/mira/002-measures.md", "book/papers/ais/ais.ipynb", "book/papers/intro.md", "book/papers/num-sde/num-sde.ipynb", "book/papers/rff/rff.ipynb", "book/papers/score-matching/score-matching.md", "book/papers/svgd/svgd.ipynb", "book/papers/why-covariances/why-covariances.md", "book/prob-intro/ch01/content.ipynb", "book/prob-intro/ch02/content.ipynb", "book/prob-intro/ch03/content.ipynb", "book/prob-intro/ch04/content.ipynb", "book/prob-intro/ch05/content.ipynb", "book/prob-intro/ch06/content.ipynb", "book/prob-intro/ch07/content.ipynb", "book/prob-intro/ch08/content.ipynb", "book/prob-intro/ch09/content.md", "book/prob-intro/ch10/content.md", "book/prob-intro/ch11/content.md", "book/prob-intro/ch12/content.md", "book/prob-intro/intro.md", "book/toc/000-exercises.md", "book/toc/000-intro.md", "book/toc/001-fsa.ipynb", "book/toc/002-cfl.ipynb", "intro.md"], "titles": ["Exercises", "Masure, integration and real analysis", "Riemann integration", "Measures", "Annealed importance sampling", "Stream of papers", "Numerical simulation of SDEs", "Random Fourier features", "Estimation by score matching", "Stein variational gradient descent", "Why covariance functions?", "Events and Probabilities", "Discrete random variables", "Multivariate discrete distributions", "Probability generating functions", "Distribution and density functions", "Multivariate distributions", "Moment generating functions", "Main limit theorems", "Branching processes", "Random walks", "Processes in continuous time", "Markov chains", "Probability: An introduction", "Excercises", "Theory of Computation", "Finite Automata and Regular Expressions", "PDAs and context-free grammars", "Home"], "terms": {"thi": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28], "page": [0, 6, 7, 28], "give": [0, 2, 3, 4, 7, 9, 10, 11, 12, 15, 19, 20, 24, 26], "solut": [0, 1, 3, 6, 20, 22, 24], "from": [0, 2, 3, 4, 5, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28], "book": [0, 1, 2, 7, 18, 22, 23, 24], "measur": [0, 1, 2, 4, 7, 12, 13, 16, 18, 19], "integr": [0, 3, 4, 7, 8, 9, 10, 15, 16, 17, 21], "real": [0, 2, 3, 7, 10, 12, 17, 18, 21], "analysi": [0, 2], "sheldon": [0, 1], "axler": [0, 1], "we": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27], "have": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28], "been": [0, 4, 9, 24, 26], "work": [0, 1, 4, 6, 7, 9, 10, 17], "through": [0, 1, 9, 10, 17, 23, 24], "adrian": [0, 1], "goldwas": [0, 1], "shreya": [0, 1], "padhi": [0, 1], "ar": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28], "joint": [0, 4, 10], "effort": 0, "pleas": [0, 5, 25, 28], "email": [0, 5, 28], "me": [0, 5, 25, 28], "you": [0, 5, 6, 24, 25, 28], "find": [0, 8, 9, 14, 17, 24], "ani": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 15, 16, 17, 18, 21, 22, 24, 25, 26, 27, 28], "error": [0, 1, 4, 5, 7, 28], "other": [0, 2, 4, 5, 6, 7, 8, 10, 12, 14, 16, 17, 19, 20, 21, 22, 24, 26, 27], "comment": 0, "suppos": [0, 2, 3, 4, 6, 8, 9, 10, 17, 18, 19, 22, 24, 26, 27], "f": [0, 2, 3, 4, 6, 7, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 22, 24, 26, 27], "b": [0, 2, 3, 6, 7, 10, 11, 12, 15, 16, 17, 18, 20, 21, 24, 26, 27], "mathbb": [0, 2, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22], "r": [0, 2, 6, 7, 9, 10, 11, 12, 13, 15, 16, 17, 18, 22, 24, 26, 27], "bound": [0, 3, 7, 17, 20, 24], "function": [0, 4, 7, 8, 9, 20, 21, 22, 24, 26, 27], "l": [0, 2, 22, 24, 26, 27], "p": [0, 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27], "u": [0, 2, 16, 17, 18, 20, 21, 22, 27], "some": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 27, 28], "partit": [0, 10], "prove": [0, 3, 7, 11, 13, 15, 17, 18, 19, 22, 24, 26, 27], "constant": [0, 6, 7, 8, 12, 15, 17, 18, 20], "let": [0, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27], "x_0": [0, 2, 4, 6, 19, 22], "ldot": [0, 2, 3], "x_n": [0, 2, 4, 6, 9, 10, 12, 14, 18, 22, 26], "note": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26], "each": [0, 2, 3, 4, 6, 7, 9, 10, 11, 12, 14, 18, 19, 20, 21, 24, 26, 27], "n": [0, 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 24, 26], "x_": [0, 2, 4, 6, 9, 10, 15, 19, 22], "inf_": [0, 2], "x": [0, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26], "sup_": [0, 2, 7], "The": [0, 2, 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 26, 27], "infimum": 0, "supremum": 0, "funtion": 0, "domain": [0, 2, 3, 6, 17], "equal": [0, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 26, 27], "onli": [0, 2, 3, 4, 7, 8, 9, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27], "therefor": [0, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 17, 18, 19, 21, 22, 24, 26, 27], "interv": [0, 2, 6, 12, 15, 19, 21], "so": [0, 2, 3, 4, 6, 7, 8, 11, 12, 17, 18, 19, 20, 21, 22, 24, 26, 27], "must": [0, 4, 6, 8, 12, 18, 21, 22, 24, 26], "leq": [0, 3, 4, 6, 7, 9, 11, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27], "s": [0, 2, 4, 9, 10, 12, 14, 15, 16, 19, 20, 21, 22, 24, 25, 26, 27], "t": [0, 2, 3, 4, 6, 7, 9, 10, 12, 15, 16, 17, 18, 19, 21, 22, 24, 27], "defin": [0, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 24, 26, 27], "begin": [0, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27], "case": [0, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27], "text": [0, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26], "0": [0, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27], "otherwis": [0, 2, 3, 4, 13, 15, 16, 17, 18, 20, 24, 26], "end": [0, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27], "riemann": [0, 6], "int_a": [0, 2], "p_n": [0, 14, 21, 24], "3n": 0, "2n": [0, 24, 26], "x_i": [0, 2, 8, 10, 22, 24], "i": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28], "frac": [0, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22], "satisifi": 0, "align": [0, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27], "sum_": [0, 2, 3, 4, 6, 7, 9, 12, 13, 17, 18, 20, 21, 22], "where": [0, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27], "term": [0, 3, 4, 6, 7, 8, 9, 11, 13, 14, 15, 17, 19, 22, 26], "come": [0, 3, 4, 7, 11, 18, 26], "fact": [0, 2, 3, 4, 6, 7, 8, 9, 11, 17, 18, 19, 21, 22, 26], "similarli": [0, 2, 3, 4, 18, 21, 22, 24, 26, 27], "upper": [0, 4, 24], "sum": [0, 3, 4, 6, 7, 8, 11, 12, 15, 18, 19, 20, 21, 22, 24, 27], "left": [0, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26], "right": [0, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 27], "which": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27], "impli": [0, 2, 3, 4, 7, 8, 16, 19, 20, 21, 22, 24, 27], "geq": [0, 3, 4, 7, 11, 12, 14, 17, 18, 19, 20, 21, 22, 24, 26, 27], "everi": [0, 2, 6, 8, 12, 15, 17, 19, 22, 24, 26, 27], "epsilon": [0, 2, 3, 7, 9, 18, 19, 24, 26, 27], "exist": [0, 2, 3, 6, 12, 13, 15, 16, 17, 18, 21, 22, 24, 26, 27], "part": [0, 2, 3, 8, 21, 22, 24, 26, 27], "Then": [0, 2, 3, 6, 7, 8, 9, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27], "definit": [0, 2, 4, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 26, 27], "inf_p": [0, 2], "sup_p": [0, 2], "follow": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28], "rearrang": [0, 3, 12, 13, 17, 22], "rewrit": [0, 4], "inf": [0, 2, 3, 15, 17, 18, 21, 22], "us": [0, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28], "sup": [0, 2, 3, 17, 18], "cup": [0, 2, 3, 11, 22, 24, 26], "refin": [0, 2, 6], "can": [0, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 27], "go": [0, 1, 4, 7, 8, 21, 22, 23, 24], "direct": [0, 3, 4, 8, 10, 14, 18], "take": [0, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 24, 26], "over": [0, 2, 3, 4, 6, 7, 8, 9, 10, 13, 16, 17, 18, 19, 21, 22, 24, 26, 28], "all": [0, 2, 4, 6, 7, 10, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 26, 27], "mean": [0, 2, 4, 6, 7, 8, 9, 10, 11, 14, 22, 24, 26, 27], "g": [0, 3, 4, 6, 9, 12, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24, 26, 27], "now": [0, 3, 4, 6, 7, 8, 9, 10, 18, 19, 20, 21, 22, 24, 26, 27], "sinc": [0, 2, 3, 4, 6, 7, 8, 10, 13, 15, 17, 18, 19, 20, 21, 22, 24, 26, 27], "p_f": 0, "p_g": 0, "contain": [0, 2, 4, 10, 11, 12, 17, 18, 22, 23, 24, 26, 27], "point": [0, 2, 4, 6, 7, 10, 12, 17, 18, 19, 20, 24, 26, 27], "inequ": [0, 3, 4, 7, 19, 22], "properti": [0, 2, 10, 11, 13, 24], "If": [0, 2, 3, 4, 5, 6, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28], "again": [0, 2, 6, 16, 19, 26, 27], "also": [0, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27], "finit": [0, 2, 4, 6, 7, 9, 11, 18, 22, 24, 27], "mani": [0, 2, 4, 6, 9, 12, 15, 17, 24], "h": [0, 3, 4, 6, 9, 10, 16, 21, 22, 24], "zero": [0, 4, 6, 17, 18, 21, 24, 26, 27], "uniform": [0, 2], "name": [0, 3, 6, 7, 11, 26, 27], "x_1": [0, 2, 4, 10, 12, 14, 15, 16, 18, 19, 21, 22, 24, 26], "2k": 0, "k": [0, 2, 3, 4, 7, 9, 10, 12, 14, 17, 19, 20, 21, 22, 24, 26, 27], "number": [0, 2, 3, 4, 6, 7, 9, 10, 12, 16, 17, 20, 21, 22, 24, 26, 27], "non": [0, 3, 4, 7, 8, 11, 14, 15, 17, 18, 19, 21, 22], "4k": 0, "made": [0, 11, 24, 26], "arbitrarili": [0, 4, 24], "larg": [0, 4, 7, 9, 10, 24], "becaus": [0, 2, 3, 4, 6, 8, 9, 10, 12, 15, 16, 17, 22, 24, 26, 27], "two": [0, 2, 3, 4, 6, 7, 9, 10, 13, 14, 15, 16, 18, 19, 20, 21, 24, 26, 27], "know": [0, 24, 27], "satisfi": [0, 3, 6, 8, 11, 12, 13, 15, 16, 18, 19, 21, 22, 24, 26, 27], "For": [0, 2, 3, 4, 6, 7, 9, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27], "denot": [0, 4, 7, 8, 9, 11, 12, 14, 17, 24, 26], "divid": [0, 21, 22], "size": [0, 3, 6, 7, 19, 24], "lim_": [0, 2, 3, 6, 16, 18, 19, 20, 21, 22], "infti": [0, 2, 6, 8, 12, 15, 16, 17, 18, 19, 20, 21, 22], "abov": [0, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 24, 26], "below": [0, 2, 6, 7, 9, 11, 13, 16, 17, 18, 21, 24, 26, 27], "By": [0, 3, 4, 6, 7, 8, 9, 12, 14, 17, 18, 21, 22, 24, 26, 27], "r_": [0, 6, 7, 10, 26, 27], "delta": [0, 2, 3, 6, 7, 15, 17, 18, 24, 26, 27], "smallest": [0, 19, 24, 26], "subinterv": [0, 2], "e_": [0, 3, 19], "z": [0, 3, 7, 9, 13, 15, 16, 17, 18, 21, 22, 24, 26], "posit": [0, 2, 3, 4, 6, 7, 8, 9, 10, 17, 20, 21, 22, 26], "integ": [0, 2, 14, 20, 21, 24, 26, 27], "2c": 0, "k_": 0, "sequenc": [0, 2, 4, 9, 12, 14, 18, 20, 21, 22, 24, 26, 27], "tend": [0, 6, 21], "subsequ": 0, "increas": [0, 2, 4, 7, 9, 15, 18, 26], "converg": [0, 12, 13, 14, 15, 16, 17, 19, 21], "repeat": [0, 3, 4, 24, 26, 27], "argument": [0, 2, 3, 6, 10, 13, 18], "obtain": [0, 3, 4, 6, 7, 8, 9, 10, 12, 14, 15, 17, 18, 19, 20, 21, 22, 24, 26, 27], "an": [0, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28], "analog": [0, 6, 15, 16, 27], "result": [0, 2, 3, 4, 8, 9, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27], "thefor": 0, "rieman": [0, 2], "j": [0, 2, 3, 6, 16, 18, 22, 23, 24, 26], "similar": [0, 2, 3, 4, 9, 15, 16, 17, 27], "n_": [0, 8, 12, 13, 18, 20, 21], "x_j": [0, 2, 6, 10, 22, 24], "limit": [0, 6, 7, 10, 19, 21, 22, 26], "p_": [0, 8, 9, 13, 21, 22, 24], "ad": [0, 2, 3, 13, 15, 16, 21, 24, 26, 27], "conclud": [0, 2, 3, 20, 24], "furthermor": [0, 22], "condit": [0, 6, 8, 10, 13, 17, 18, 19, 20, 21, 22, 26, 27], "hold": [0, 2, 3, 4, 6, 8, 12, 15, 17, 18, 19, 21, 22, 26, 27], "int_c": 0, "_": [0, 4, 7, 8, 9, 10, 16, 17, 19, 22, 24, 26], "x_2": [0, 12, 14, 15, 16, 18, 19, 21, 22, 24], "arriv": [0, 3, 6, 7, 8, 9, 12, 17, 18, 19, 20, 22, 26], "p_1": [0, 14, 21], "p_2": [0, 14], "respect": [0, 2, 6, 8, 9, 10, 11, 14, 15, 17, 21, 24, 26], "combin": [0, 7, 11, 18, 24], "small": [0, 4, 6, 7, 9], "explain": 0, "why": [0, 4], "doe": [0, 3, 4, 6, 7, 8, 9, 10, 12, 17, 18, 19, 20, 22, 24, 26, 27], "space": [0, 2, 4, 7, 8, 9, 10, 15, 16, 19, 22, 24, 26], "mu": [0, 3, 6, 10, 14, 15, 17, 18, 19, 21], "e": [0, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27], "neq": [0, 3, 6, 8, 17, 19, 20, 21, 22, 24, 26, 27], "instead": [0, 3, 4, 6, 9, 10, 12, 16, 18, 26], "subseteq": [0, 3, 11, 15, 16, 19, 22, 24, 26, 27], "w_1": [0, 24, 26], "w_2": [0, 24, 26], "w_n": [0, 4, 6, 24, 26], "bigcup_": [0, 3], "requir": [0, 2, 3, 4, 12, 18, 22, 24, 26, 27], "exampl": [0, 2, 4, 6, 8, 9, 11, 12, 13, 15, 18, 24, 26], "meeasur": 0, "via": [0, 3, 4, 7, 9, 26], "determin": [0, 9, 12, 14, 15, 17, 20, 21, 24], "subset": [0, 2, 6, 7, 10, 11, 12, 22, 24], "convers": [0, 3, 4, 24], "write": [0, 2, 3, 6, 7, 8, 10, 15, 18, 20, 21, 22, 24, 26, 27], "binari": [0, 3, 21, 24, 26], "expans": [0, 6, 14, 18], "x_1x_2": 0, "see": [0, 2, 3, 4, 6, 7, 8, 10, 12, 14, 17, 18, 19, 20, 21, 22, 24, 26], "mathbf": [0, 10, 22], "3k": 0, "mathcal": [0, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 26, 27], "set": [0, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27], "disjoint": [0, 11, 20, 24, 27], "countabl": [0, 11, 12, 15], "_k": [0, 4], "least": [0, 2, 3, 4, 5, 8, 19, 22, 24, 26], "one": [0, 2, 3, 4, 7, 8, 9, 10, 11, 12, 16, 17, 18, 19, 20, 22, 24, 26, 27], "infinit": [0, 2, 6, 10, 17, 18, 22, 24, 26, 27], "element": [0, 3, 10, 11, 21, 24, 26], "a_1": [0, 3, 11, 13, 24, 26, 27], "a_2": [0, 3, 11, 13, 24, 26, 27], "addit": [0, 4, 6, 11, 13, 18, 20, 24, 26, 27], "a_n": [0, 3, 6, 11, 13, 20], "contradict": [0, 3, 18, 21, 22, 24, 26, 27], "im": [0, 12, 13], "rang": [0, 2, 3, 4, 6, 17, 21], "setminu": [0, 2, 3, 11], "given": [0, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27], "sigma": [0, 7, 15, 17, 18, 19, 24, 26, 27], "algebra": 0, "nu": 0, "singleton": [0, 22, 26], "cap": [0, 3, 11, 13, 20, 24, 26, 27], "agre": 0, "need": [0, 2, 3, 4, 6, 10, 12, 15, 16, 22, 24, 26], "show": [0, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 17, 18, 19, 21, 22, 24, 26, 27], "first": [0, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 17, 18, 19, 20, 22, 24, 26, 27], "whose": [0, 3, 4, 6, 8, 12, 15, 19, 26], "second": [0, 2, 3, 6, 8, 17, 18, 19, 21, 22, 24, 26, 27], "emptyset": [0, 3, 11, 15, 26], "third": [0, 2, 3, 10, 15, 17, 19, 22, 24, 27], "decreas": [0, 9, 15, 19, 21, 27], "e_1": [0, 3, 19], "e_2": [0, 3, 19], "cdot": [0, 3, 6, 9, 12, 16, 21], "bigcap_": [0, 3], "e_n": [0, 3], "formula": [0, 6, 9, 20], "countatbl": 0, "complet": [0, 3, 19, 24], "descript": [0, 24], "valu": [0, 2, 3, 4, 6, 7, 9, 10, 12, 14, 15, 16, 17, 19, 20, 21, 22], "along": [0, 1, 8, 26], "consist": [0, 26, 27], "those": [0, 24, 26], "decim": 0, "hundr": 0, "consecut": 0, "4s": 0, "borel": 0, "what": [0, 3, 6, 10, 12, 24, 26, 27], "lebesgu": [0, 2, 3], "union": [0, 11, 24], "x_k": [0, 2, 4, 21, 22, 24], "m": [0, 2, 3, 4, 7, 9, 10, 14, 18, 20, 22, 24, 26, 27], "100": [0, 4, 7], "togeth": [0, 2, 3, 4, 20, 21, 22, 24, 26], "close": [0, 2, 4, 6, 7, 8, 9, 11, 22, 24, 26], "open": [0, 2], "comput": [0, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 20, 24, 26, 27], "ration": [0, 2, 21], "ha": [0, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 26, 27], "digit": 0, "do": [0, 2, 3, 4, 6, 8, 9, 10, 17, 24, 26, 27], "last": [0, 2, 3, 4, 6, 8, 12, 13, 15, 26, 27], "its": [0, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 24, 26, 27], "up": [0, 3, 4, 6, 7, 12, 15, 24, 26], "recurs": [0, 19, 20, 21, 22, 26], "relat": [0, 7, 11, 13, 15, 16, 17, 18, 20, 21, 22, 24], "ten": [0, 6], "possibl": [0, 2, 4, 7, 9, 10, 11, 12, 17, 20, 26], "append": [0, 4, 6], "99": 0, "fewer": [0, 24, 26], "than": [0, 2, 3, 4, 7, 9, 11, 13, 17, 18, 21, 22, 24, 26, 27], "would": [0, 2, 3, 4, 7, 10, 11, 12, 17, 18, 24], "collect": [0, 5, 11, 19, 24], "inform": [0, 6, 10, 11, 12, 17], "c_n": 0, "c_": [0, 19, 21], "bmatrix": [0, 10, 24], "dot": [0, 2, 4, 10, 17, 18, 24, 26, 27], "vdot": [0, 19], "ddot": 0, "includ": [0, 1, 2, 3, 6, 12, 13, 18, 24, 26], "th": [0, 2, 8, 9, 10, 12, 14, 17, 19, 22, 24], "correspond": [0, 4, 6, 7, 9, 10, 11, 17, 18, 21, 22, 24, 26, 27], "wai": [0, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 15, 18, 20, 22, 24, 26, 27], "choos": [0, 6, 12, 20, 21, 24], "arbitrari": [0, 3, 4, 6, 9], "sequnc": 0, "deriv": [0, 2, 4, 7, 8], "earlier": [0, 3, 4, 11, 26], "express": [0, 2, 6, 7, 8, 9, 11, 12, 13, 15, 16, 19, 20, 24], "summat": [0, 20], "vector": [0, 7, 8, 9, 10, 22], "cap_": [0, 3], "final": [0, 3, 12, 15, 21, 22, 24, 26], "move": [0, 24, 27], "insid": 0, "matrix": [0, 10, 22], "power": [0, 3, 19, 26, 27], "lceil": 0, "rceil": 0, "sim": [0, 3, 4, 6, 7, 9], "differ": [0, 4, 6, 7, 13, 18, 20, 26, 27], "equival": [0, 11, 16, 18, 19, 22, 24, 26, 27], "v": [0, 3, 4, 6, 16, 17, 20, 21, 22, 27], "exactli": [0, 2, 3, 4, 20, 24, 26, 27], "class": [0, 3, 4, 17, 22, 24, 26, 27], "In": [0, 2, 3, 4, 6, 7, 8, 9, 10, 11, 14, 16, 17, 18, 19, 20, 22, 24, 26, 27], "proof": [0, 2, 3, 6, 8, 12, 13, 17, 18, 19, 20, 21, 22, 26, 27], "nonaddit": 0, "outer": [0, 2], "line": [0, 3, 4, 17, 19, 21, 22], "preliminari": 0, "phrase": 0, "nontrivi": 0, "more": [0, 2, 3, 4, 6, 7, 9, 11, 13, 15, 16, 18, 21, 24, 26, 27], "recal": 0, "might": [0, 8, 11, 12, 17], "neither": [0, 24], "minu": [0, 18, 26], "cup_": [0, 3], "written": [0, 4, 12, 13, 15, 16, 17, 22, 24, 27], "sai": [0, 3, 6, 10, 11, 16, 17, 18, 22, 24, 26, 27], "u_1": [0, 14, 27], "u_2": [0, 14, 27], "u_n": [0, 14, 18, 20], "most": [0, 1, 4, 5, 9, 15, 17, 24], "endpoint": [0, 2, 3], "consid": [0, 3, 4, 6, 7, 8, 9, 10, 12, 13, 15, 17, 18, 19, 20, 21, 22, 24, 26, 27], "cover": [0, 25], "hein": 0, "theorem": [0, 2, 6, 8, 19, 20, 21, 22, 26], "subcov": 0, "reason": [0, 4, 10, 11, 12, 17], "same": [0, 3, 4, 6, 7, 10, 14, 16, 17, 18, 22, 24, 26, 27], "appli": [0, 3, 4, 6, 8, 9, 10, 11, 17, 18, 22, 24, 26, 27], "lastli": [0, 2, 3, 7, 12, 22, 27], "deal": [0, 9, 14, 15, 19, 22], "unbound": [0, 9], "form": [0, 2, 4, 6, 7, 9, 15, 16, 17, 18, 24, 26], "miss": [0, 11], "entir": [0, 10, 24, 25, 26], "thei": [0, 3, 4, 5, 7, 12, 14, 16, 17, 22, 23, 24, 26, 27, 28], "themselv": 0, "specif": [0, 3, 4, 14], "As": [0, 2, 4, 6, 11, 12, 16, 17, 21, 24, 26], "shown": [0, 2, 6, 11, 12, 13, 14, 15, 16, 17, 18, 20, 26], "f_1": [0, 2, 3, 9, 24, 26], "f_2": [0, 2, 3, 24, 26], "f_n": [0, 2, 20], "c_k": 0, "i_n": [0, 3, 22], "i_1": [0, 3, 22], "i_2": [0, 3, 22], "attain": [0, 12], "relabel": [0, 3], "order": [0, 2, 14, 18, 24, 26, 27], "seri": [0, 17, 19], "put": [0, 2, 3, 4, 26], "fix": [0, 3, 6, 24], "It": [0, 2, 4, 6, 10, 16, 17, 19, 21, 22, 26, 27], "g_1": [0, 3, 14, 19, 24, 27], "supseteq": 0, "g_2": [0, 14, 24, 27], "g_n": [0, 3, 14], "u_k": [0, 27], "translat": [0, 7], "invari": [0, 4, 7, 17], "precis": [0, 6, 15, 26], "continu": [0, 6, 7, 11, 12, 17, 19, 26], "pre": 0, "imag": [0, 12, 24], "under": [0, 2, 3, 4, 6, 8, 10, 11, 17, 22, 24], "leav": [0, 4, 12], "dilat": 0, "ta": [0, 17, 18], "multipl": [0, 9, 13, 24, 27], "tb": [0, 17], "scale": [0, 4, 7, 9, 15, 17], "absolut": [0, 7, 12, 13, 14, 15, 16, 17], "done": [0, 26], "r_1": [0, 2, 3, 26, 27], "r_2": [0, 2, 3, 26], "onc": [0, 2, 3, 4, 11, 12, 17, 21, 24, 27], "r_i": [0, 26, 27], "r_j": 0, "thu": [0, 3, 4, 7, 10, 19, 22, 24, 27], "subaddit": 0, "But": [0, 26], "turn": [0, 3, 4, 7, 9, 13, 26, 27], "These": [1, 2, 4, 11, 18, 23, 25, 27], "freeli": [1, 25], "avail": [1, 4, 8, 25], "onlin": [1, 25, 28], "progress": [1, 9], "current": [1, 4], "read": [1, 4, 5, 24, 26, 27], "group": 1, "exercis": [1, 23], "solv": [1, 4, 6, 7, 20], "like": [1, 2, 3, 7, 9, 12, 15, 16, 25], "my": [1, 10, 24, 25], "own": [1, 15, 24], "introduc": [2, 3, 4, 7, 13, 18, 20, 26, 27], "good": [2, 9], "enough": 2, "import": [2, 3, 6, 9, 10, 12, 17, 18, 26], "review": [2, 6, 12], "discuss": [2, 3, 6, 10, 13], "fall": [2, 9, 17], "short": [2, 6], "lead": [2, 3, 6, 12, 22, 24], "idea": [2, 3, 4, 9, 12, 18, 26, 27, 28], "appropri": [2, 3, 4, 6, 7, 9, 10, 12, 26], "length": [2, 24, 26, 27], "howev": [2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 20, 22, 24, 27], "too": [2, 6, 11, 18, 19], "fail": [2, 9], "captur": [2, 4, 9, 12, 17], "gener": [2, 3, 4, 7, 8, 9, 10, 11, 13, 15, 16, 18, 20, 21, 22, 26], "few": [2, 3, 4, 26], "down": [2, 4, 7, 10, 24], "approxim": [2, 4, 6, 8], "area": [2, 3, 18], "curv": 2, "rectangl": 2, "list": [2, 3, 4], "notat": [2, 6, 7, 9, 10, 14, 20, 21, 24, 26], "our": [2, 3, 4, 6, 7, 9, 10, 11, 12, 21, 26], "With": [2, 3, 6], "place": [2, 3, 5, 7, 11, 24], "1": [2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 26, 27], "veri": [2, 3, 4, 9, 10, 14, 23, 26, 27], "intermedi": 2, "reduc": [2, 4, 7, 9], "middl": [2, 4, 8], "less": [2, 3, 6, 17], "anoth": [2, 3, 4, 9, 10, 11, 12, 15, 16, 17, 18, 19, 24, 27], "directli": [2, 4, 6, 8, 12, 16], "previou": [2, 3, 10, 22, 24, 26, 28], "readi": 2, "thought": 2, "best": [2, 6, 15, 24], "taken": [2, 12, 16, 19, 21], "call": [2, 3, 4, 7, 8, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 26, 27], "section": [2, 9, 18], "about": [2, 3, 6, 7, 10, 11, 12, 16, 17, 18, 27], "uniformli": [2, 7, 15, 17], "concern": [2, 13], "frequent": 2, "estim": [2, 4, 6, 7], "while": [2, 4, 6, 7, 9, 10, 11, 21, 26], "suffici": [2, 6, 9, 19], "three": [2, 6, 7, 11, 18, 24, 26], "issu": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 17, 24, 25, 26, 27, 28], "handl": [2, 4, 7, 9, 27], "discontinu": 2, "extend": [2, 3, 13, 15, 16, 22, 24, 26, 27], "well": [2, 3, 4, 6, 7, 8, 9, 15, 16, 18, 21, 24, 26, 27], "certain": [2, 3, 6, 7, 11, 12, 14, 17, 19, 26], "particular": [2, 4, 6, 8, 12, 19, 22, 26, 27], "even": [2, 4, 6, 7, 9, 11, 18, 20, 26, 27], "next": [2, 4, 6, 7, 13, 18, 27], "four": 2, "illustr": [2, 4, 7, 9, 18], "q": [2, 3, 4, 9, 11, 12, 14, 20, 24, 26, 27], "On": [2, 4, 10, 17, 21], "hand": [2, 3, 10, 15, 17, 21, 27], "saw": 2, "further": [2, 4, 7, 9, 15, 16, 17, 19, 20, 22, 26], "sqrt": [2, 7, 9, 15, 17, 18], "standard": [2, 4, 6, 9, 15, 18], "could": [2, 4, 6, 10, 11, 12, 17], "int_0": [2, 15], "stackrel": [2, 27], "def": [2, 4, 6, 7, 9], "downarrow": 2, "approach": [2, 9, 10], "2": [2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 26, 27], "alwai": [2, 4, 7, 8, 10, 11, 12, 17, 26], "r_n": [2, 26], "r_k": [2, 3], "look": [2, 4, 6, 9, 26, 27], "expect": [2, 3, 4, 6, 7, 8, 9, 17, 19, 20, 22], "outlin": 2, "That": [2, 3, 12], "nonempti": [2, 3, 26], "wa": [2, 3, 4, 10, 12, 18, 24, 26, 27], "abl": [2, 7, 9, 10], "exchang": 2, "cannot": [2, 3, 4, 6, 8, 9, 10, 21, 22, 24, 26, 27], "provid": [2, 3, 6, 11, 18, 27], "here": [2, 4, 5, 6, 9, 10, 12, 17, 24], "suffer": 2, "ideal": 2, "assumpt": [2, 9, 18, 21, 22, 24], "theoret": 2, "develop": 2, "yield": [2, 3, 4, 6, 9, 20, 21], "chapter": [3, 7, 11, 13, 18, 19, 26], "build": [3, 12, 24, 26, 27], "establish": [3, 26], "notion": [3, 6, 26, 27], "describ": [3, 6, 15, 16, 19, 21, 24, 26], "sever": [3, 9, 11, 13], "should": [3, 4, 6], "lack": 3, "necessarili": 3, "problem": [3, 4, 9, 10, 13, 14, 24, 26], "fundament": [3, 11], "A": [3, 4, 6, 7, 9, 10, 11, 12, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24], "relax": 3, "later": [3, 26, 27], "studi": [3, 14, 17, 24, 28], "hope": 3, "To": [3, 4, 6, 7, 9, 12, 17, 18, 19, 20, 21, 22, 24], "lenght": 3, "ell": [3, 9], "i_j": 3, "i_k": 3, "a_k": [3, 24], "superset": [3, 27], "both": [3, 7, 8, 21, 22, 24, 26, 27], "side": [3, 6, 8, 15, 17, 18, 21, 22, 27], "state": [3, 6, 14, 15, 17, 18, 21, 24, 27], "out": [3, 4, 6, 8, 9, 10, 18, 25, 26, 27], "true": [3, 4, 6, 8, 9, 15], "i_": 3, "doubli": 3, "index": [3, 8, 19, 20, 21, 24, 26], "singl": [3, 4, 6, 7, 12, 16, 20, 22, 24, 26], "3": [3, 4, 6, 7, 11, 12, 18, 22, 24, 27], "4": [3, 4, 6, 7, 11, 17, 24, 27], "want": [3, 4, 6, 7, 9, 10, 11, 22], "rather": [3, 4, 7, 22], "between": [3, 4, 6, 7, 9, 15, 16, 21, 22, 26], "independ": [3, 6, 7, 8, 9, 12, 18, 20, 21, 22], "interest": [3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], "beyond": [3, 25], "theori": [3, 14, 18, 24, 26], "statement": [3, 6, 7, 11, 12, 24], "c": [3, 6, 7, 10, 11, 17, 19, 20, 21, 22, 24, 27], "said": [3, 6, 12, 18, 21], "goe": [3, 6, 18, 24], "special": [3, 15, 16, 18, 19, 24, 26], "d": [3, 4, 6, 7, 9, 10, 12, 14, 15, 16, 18, 19, 21, 22, 23, 24], "g_j": 3, "induct": [3, 19, 26], "after": [3, 4, 10, 19, 24, 26, 27], "base": [3, 4, 11, 12, 18, 26], "assum": [3, 4, 8, 15, 16, 18, 21], "step": [3, 4, 6, 8, 9, 19, 20, 22, 24, 26, 27], "hypothesi": 3, "nice": [3, 6, 28], "interestingli": 3, "diagon": 3, "usual": [3, 4, 13], "inverv": 3, "distinct": [3, 24, 26], "nonzero": 3, "neg": [3, 4, 7, 9, 15, 17, 18, 19, 22], "allow": [3, 7, 9, 11, 15, 20, 26, 27], "reli": [3, 7], "y": [3, 6, 7, 12, 13, 14, 15, 16, 17, 19, 20, 22, 24, 26], "iff": [3, 11, 14, 18, 21, 22, 24], "detail": [3, 4, 7, 15], "reflex": [3, 22, 24], "symmetr": [3, 4, 20, 22, 24], "transit": [3, 4, 6, 20, 22, 24, 26, 27], "There": [3, 10, 12, 17, 21, 22, 24, 26], "mathtild": 3, "tild": [3, 4], "represent": 3, "uniqu": [3, 6, 8, 21, 22, 24], "inclus": [3, 13], "6": [3, 4, 11, 27], "time": [3, 4, 6, 7, 9, 10, 12, 19, 20, 24, 26, 27], "reach": [3, 19, 22, 24, 25, 26, 27], "shortli": [3, 6, 7], "befor": [3, 4, 6, 20, 26], "context": [3, 7], "s_1": [3, 24, 27], "s_2": [3, 24], "s_k": [3, 20, 24], "s_n": [3, 18, 20, 24, 26], "highlight": [3, 4, 6], "separ": [3, 7, 9, 12, 24], "sens": [3, 4, 6, 10, 11, 17, 18, 26, 27], "were": [3, 6, 7, 26], "relev": 3, "observ": [3, 4, 6, 7, 8, 9, 10, 11, 12, 14], "bevaus": 3, "a_3": [3, 24], "repres": [3, 6, 7, 11, 19, 24, 26, 27], "clss": 3, "sequnec": [3, 4], "e_k": 3, "pair": [3, 7, 10, 16, 24, 27], "simpli": [3, 4, 7, 10, 14], "clear": [3, 7], "intersect": [3, 11, 19, 24, 26], "notin": 3, "circ": [3, 26], "complement": [3, 11, 24], "refer": [3, 11, 26], "delta_x": 3, "equat": [3, 4, 11, 17, 18, 19, 20, 21, 22, 24], "bore": 3, "empti": [3, 11, 24, 26], "fg": 3, "half": 3, "product": [3, 6, 9, 11, 14, 15, 18, 19], "f_k": [3, 20, 24], "simul": [4, 9], "distribut": [4, 6, 7, 9, 10, 17, 19, 21], "central": [4, 7, 9, 10, 12], "statist": [4, 8, 9, 12], "machin": [4, 7, 8, 9, 24, 26], "learn": [4, 7, 8, 9], "enabl": [4, 9, 11], "quantiti": [4, 6, 10, 11, 12, 14, 18, 19], "often": [3, 4, 6, 11, 12, 13, 14, 15, 16, 17, 18], "evalu": [4, 8, 9, 10, 16], "int": [4, 6, 7, 8, 9, 10, 15, 16, 17, 18], "dx": [4, 6, 8, 9, 15, 16, 17], "probabl": [4, 6, 7, 8, 16, 17, 20, 21, 22], "densiti": [4, 7, 8, 9, 17], "acccess": 4, "cumul": [4, 6], "easili": [4, 8, 9, 14, 15, 26], "draw": [4, 6, 7, 26], "invers": [4, 10], "transform": [4, 7, 17], "analyt": [4, 6, 9], "tractabl": [4, 9], "conjug": 4, "bayesian": [4, 9], "model": [4, 6, 7, 8, 9, 10, 12, 26, 27], "typic": [4, 7, 13], "involv": [4, 6, 9, 13, 17, 18, 27], "intract": [4, 8, 9], "kind": [4, 26, 27], "resort": [4, 8], "method": [4, 7, 9, 13], "mont": [4, 7, 9], "carlo": [4, 7, 9], "get": [4, 6, 7, 9, 17, 24, 26, 28], "around": [4, 6, 10], "inst": 4, "correct": [4, 6], "bia": 4, "account": [4, 27], "weigh": 4, "them": [4, 6, 14, 16, 23, 24, 26, 27, 28], "unbias": [4, 7], "downstream": [4, 13], "circumv": [4, 17], "unfortun": 4, "dissimilar": 4, "random": [4, 6, 8, 10, 16, 17, 18, 19, 21, 28], "neal": 4, "2001": [4, 6, 18, 21, 22], "procedur": [4, 24, 26, 27], "produc": [4, 7, 9, 10, 24], "remain": [4, 7, 12, 27], "greatli": 4, "wish": [4, 6, 18], "approx": [4, 7], "applic": [4, 6, 7, 9, 17, 27], "technic": [4, 17], "whenev": [4, 10, 12, 13, 15, 16, 17, 24], "hereaft": 4, "underbrac": [4, 26], "ratio": [4, 6], "contribut": [4, 6], "propos": 4, "commonli": [4, 6], "target": [4, 9], "ultim": 4, "origin": [3, 4, 18, 24, 27], "practic": [4, 7], "off": 4, "magnitud": 4, "factor": [4, 13, 17], "overal": 4, "cost": [4, 7, 10], "common": [4, 17, 18, 19], "aris": 4, "lot": [4, 23], "simpl": 4, "mixtur": 4, "gaussian": [4, 6, 7, 8, 10], "pi": [4, 7, 15, 17, 18, 20, 22, 24], "mu_1": 4, "sigma_1": [4, 19], "mu_2": 4, "sigma_2": [4, 19, 24], "Of": 4, "cours": [4, 25, 26], "pretend": 4, "mu_q": 4, "sigma_q": 4, "intergr": 4, "5": [4, 6, 7, 9, 11, 18, 26], "40": 4, "exact": [4, 6, 7], "antisymmetr": 4, "46": 4, "seem": 4, "bit": [4, 7, 24, 26], "trial": [4, 12, 20], "10": [4, 7, 24], "13": 4, "309": 4, "though": [4, 6, 7, 9, 26], "compar": [4, 6, 15, 24], "pick": [4, 9, 24], "how": [4, 6, 7, 9, 16, 19], "much": [4, 6, 7, 9, 16, 17, 26], "had": [4, 16], "access": [4, 6, 8, 28], "beat": 4, "07": [4, 7], "848": 4, "seven": 4, "larger": [4, 17, 24, 26], "occur": [4, 9, 11, 12, 13, 20, 21, 24, 27], "plot": [4, 7], "raw": 4, "drawn": [4, 7], "green": [4, 18], "accord": [4, 6, 7, 9, 12, 19, 24], "blue": [4, 18], "although": [4, 6, 9, 12, 22], "still": [4, 11, 24], "histogram": 4, "just": [3, 4, 6, 10, 15, 18, 26], "high": [4, 7], "becom": [4, 19, 26], "mould": 4, "empir": [4, 6, 8], "resembl": 4, "receiv": [4, 24], "rel": [4, 7], "infrequ": 4, "sometim": [4, 18, 27], "mai": [3, 4, 6, 7, 9, 11, 12, 14, 15, 16, 17, 18, 24, 26, 27], "mode": 4, "affect": [4, 6, 9], "domin": 4, "axi": [4, 6, 7, 9], "log": [4, 8, 9, 18, 21], "littl": 4, "make": [4, 6, 7, 9, 11, 12, 18, 19, 20, 24, 26, 27, 28], "integrand": [4, 6, 7], "smaller": [4, 7, 19], "amount": [4, 7, 18], "variabl": [4, 6, 7, 9, 10, 17, 18, 19, 21, 22, 27], "partricular": 4, "exponenti": [4, 7, 18, 21], "kl": 4, "diverg": [4, 9, 17, 22], "max": 4, "d_": 4, "kullback": 4, "leibler": 4, "diver": 4, "nat": 4, "jensen": 4, "exp": [4, 6, 7, 9, 15, 17, 18], "lemma": [4, 22, 24], "when": [4, 6, 9, 10, 12, 14, 15, 17, 18, 20, 24, 26, 27], "agreement": 4, "actual": 4, "flipsid": 4, "tell": 4, "ai": 4, "markov": [4, 8, 9, 18], "chain": [4, 9], "closer": [4, 9], "achiev": [4, 6, 8, 11, 17], "gradual": 4, "motiv": [3, 4], "intuit": [4, 8, 13, 17, 18, 26], "initi": [4, 6, 9, 19, 20, 21, 22, 24, 26], "gear": 4, "toward": 4, "type": [4, 19, 27], "initialis": [4, 9], "proce": [4, 12, 20], "acord": 4, "randomis": 4, "rule": [4, 10, 15, 26, 27], "principl": [4, 24, 26], "within": [4, 6, 8, 12, 17], "kernel": [4, 7, 9], "t_1": [4, 6, 21], "t_k": [4, 21], "return": [4, 6, 7, 9, 20, 22, 26], "chosen": [4, 6], "w": [4, 6, 7, 9, 15, 17, 24, 26, 27], "ergod": [4, 22], "intial": 4, "q_k": [4, 26], "dx_0": 4, "dx_": 4, "specifi": [4, 6, 12], "select": [4, 10, 26], "nest": 4, "extens": [4, 13, 14], "either": [4, 9, 18, 20, 22, 24, 26], "One": [4, 6, 7, 9, 10, 13, 14, 17, 18], "revers": [4, 24], "valid": [4, 11, 12, 16, 26, 27], "start": [4, 7, 11, 20, 22, 24, 26, 27], "_1": 4, "perform": [4, 7, 24], "augment": [4, 10], "ensur": [4, 9, 11, 27], "dx_k": 4, "crucial": [3, 4, 27], "cancel": [4, 17], "got": 4, "load": 4, "improv": [4, 24, 28], "modifi": [4, 24, 26], "better": [4, 10, 26], "advantag": 4, "beta_0": 4, "beta_k": 4, "pi_k": [4, 21], "interpol": [4, 17], "vari": [4, 17], "beta": [4, 9, 20], "except": [4, 10, 17, 22, 24, 26, 27], "beta_n": 4, "impoprt": 4, "pi_0": [4, 21], "pi_1": [4, 21], "pi_": [4, 20, 21], "acccord": 4, "margin": [4, 10, 13, 16, 21], "paramet": [4, 6, 7, 8, 9, 12, 14, 15, 17, 21], "metropoli": 4, "hast": 4, "itself": [4, 6, 9, 14, 18, 24, 26, 27], "confus": 4, "ll": [4, 6], "user": [4, 7], "transitionkernel": 4, "__init__": 4, "self": [4, 10, 24], "pass": [4, 9, 17, 24], "__call__": 4, "tf": [4, 9], "tensor": 4, "gaussiantransitionkernel": 4, "creat": [4, 26], "forward": [4, 20], "tfd": 4, "normal": [4, 6, 7, 8, 18], "loc": [4, 7], "next_x": 4, "accept": [4, 24], "log_prob_1": 4, "log_prob": 4, "log_prob_2": 4, "log_prob_ratio": 4, "math": 4, "reduce_min": 4, "reject": [4, 24, 26], "categor": 4, "num_sampl": 4, "dtype": [4, 9], "int32": 4, "x_accept": 4, "convert_to_tensor": [4, 9], "annealedimportancesampl": 4, "schedul": 4, "initial_distribut": 4, "target_distribut": 4, "transition_kernel": 4, "float": 4, "num_step": 4, "shape": [4, 6, 7, 9], "x0": [4, 6], "run": [4, 6, 9, 24, 26], "samples_and_log_weight": 4, "map_fn": 4, "run_chain": 4, "jit_compil": 4, "arg": 4, "histori": 4, "chain_histori": 4, "annealed_log_prob": 4, "log_w": 4, "next_annealed_log_prob": 4, "log_geometric_mixtur": 4, "float64": 4, "callabl": 4, "_log_geometric_mixtur": 4, "sampler": 4, "gamma_k": 4, "transition_scal": 4, "intialis": 4, "nn": 4, "sigmoid": 4, "cast": 4, "linspac": [4, 6, 7], "1e": 4, "1000": [4, 6], "visualis": [4, 7, 27], "plt": 4, "figur": 4, "figsiz": 4, "8": [4, 6, 7], "x_plot": 4, "p_plot": 4, "color": 4, "tab": 4, "q_plot": 4, "hist": 4, "alpha": [4, 17, 20, 24], "bin": [4, 6], "zorder": 4, "label": [4, 26], "purpl": 4, "titl": 4, "fontsiz": 4, "22": 4, "xlabel": 4, "18": 4, "ylabel": 4, "xtick": 4, "np": [4, 6, 7], "ytick": 4, "xlim": 4, "ylim": 4, "legend": 4, "16": 4, "twin_axi": 4, "gca": 4, "twinx": 4, "f_plot": 4, "red": [4, 18], "60": 4, "bar": [4, 17, 26], "appear": [4, 6, 26, 27], "significantli": [4, 7], "chang": [4, 6, 9, 17, 26], "suggest": [4, 11, 26], "moost": 4, "verifi": [4, 6, 12, 13], "clearli": [4, 10, 17], "signific": 4, "impact": 4, "ve": 4, "far": [4, 26], "02": [], "198": [], "induc": [4, 7], "help": [4, 26], "address": 4, "iter": [4, 9, 19], "preserv": [4, 26], "radford": 4, "paper": [4, 6, 7, 26], "classic": 4, "worth": [4, 10, 17], "nea01": 4, "11": [4, 7, 18, 26], "125": 4, "139": 4, "demo": 5, "literatur": 5, "style": 5, "recent": [5, 7], "top": [5, 7, 8, 9, 10, 24, 27], "ones": [5, 24, 26, 27], "bottom": [5, 24], "spot": [5, 25, 28], "feedback": 5, "feel": [5, 28], "free": [5, 28], "reproduct": 6, "script": 6, "found": [6, 18, 23], "higham": 6, "algorithm": [6, 7, 9, 24, 26], "introduct": [6, 18, 24], "center": 6, "exclud": 6, "linear": [6, 7, 17], "stabil": 6, "supplementari": 6, "system": [6, 21], "wherea": [6, 10, 14, 15, 21], "ordinari": 6, "od": 6, "determinist": [6, 26], "govern": 6, "partli": 6, "compon": 6, "dynam": 6, "fine": 6, "grain": 6, "complex": [6, 7, 26], "afford": 6, "nois": [6, 7], "purpos": [6, 7, 9], "depend": [6, 8, 9, 10, 13, 22], "t_2": 6, "t_3": 6, "t_4": 6, "perp": [6, 21], "imagin": 6, "path": [6, 26], "particl": [6, 9], "experi": [6, 11], "infinitesim": [6, 12], "kick": 6, "diminish": 6, "futur": [6, 19, 21], "past": [6, 21], "present": [6, 7, 8, 9, 11, 12, 15, 17, 18, 21], "instanc": 6, "t_n": 6, "t_": [6, 21], "t_0": [6, 21], "seed": 6, "500": 6, "dt": [6, 12, 17], "none": [6, 7, 9, 26], "dw": 6, "concaten": [6, 7], "cumsum": 6, "entireti": 6, "deviat": 6, "discretis": 6, "level": [6, 17], "x_mean": 6, "x_stdev": 6, "var": [6, 7, 12, 17, 18, 19], "thing": [6, 27, 28], "1_0": [6, 15], "b_a": [6, 15], "matter": 6, "lambda": [6, 12, 14, 15, 17, 18, 20, 21, 22], "choic": 6, "behav": [6, 16], "widespread": 6, "stratonovich": 6, "midpoint": 6, "w_t": 6, "dw_t": 6, "moment": [6, 15, 18, 21], "w_": [6, 27], "varianc": [6, 17, 18, 19], "fourth": 6, "o": [6, 7, 12, 18, 21, 24], "summand": [6, 16], "contrast": [6, 24], "z_n": [6, 18, 21], "big": [6, 7, 8, 9, 18, 19], "419": 6, "415": 6, "917": 6, "915": 6, "vanish": 6, "implic": [6, 18, 22], "onward": 6, "exclus": [6, 13], "ammen": 6, "scalar": [6, 9], "drift": 6, "diffus": 6, "implement": 6, "em": 6, "euler_maruyama": 6, "advanc": 6, "store": 6, "new": [6, 19, 24, 26, 27], "known": [6, 12, 14, 24], "black": 6, "schole": 6, "closur": [6, 24], "f_g_black_schol": 6, "lamda": 6, "grad": 6, "fals": 6, "els": 6, "associ": [6, 10, 11, 12], "x_t": [6, 19, 22], "exact_black_schol": 6, "unlik": [6, 9, 15, 17, 18], "rememb": 6, "share": 6, "aginst": 6, "accuraci": 6, "adjust": [6, 11], "fun": 6, "asid": 6, "try": [3, 6], "omega": [6, 7, 11, 12, 13, 14, 15, 16, 17, 19, 22], "co": [6, 7, 17], "sin": 6, "perturb": 6, "f_g_sine": 6, "quickli": [6, 7, 17, 19], "disctinct": 6, "senc": 6, "gamma": [6, 27], "tau_n": 6, "rate": [6, 9, 21], "weaker": [6, 18], "without": [6, 7, 8, 24], "w_j": 6, "tau_j": 6, "did": 6, "opos": 6, "variou": 6, "plug": 6, "altern": [6, 15, 18, 19, 21], "evolut": [6, 21], "dv": 6, "autonom": 6, "dx_t": 6, "u_t": 6, "h_t": 6, "squar": [6, 17, 19], "twice": [6, 24], "y_t": 6, "dy_t": 6, "partial": [6, 8, 11, 16, 18, 21, 22], "v_t": 6, "formal": [6, 24, 26], "oksend": 6, "1992": 6, "44": 6, "48": 6, "sketch": 6, "taylor": [6, 14, 18], "being": [6, 7, 8, 13, 16, 27], "ommit": [6, 18], "bracket": [6, 8], "neglect": 6, "u_th_t": 6, "bigg": [6, 7, 19], "vert_": [6, 19], "h_": [6, 10], "dw_": 6, "hig01": 6, "siam": 6, "43": 6, "525": 6, "546": 6, "oks92": 6, "bernt": 6, "3rd": 6, "ed": 6, "springer": [6, 7], "verlag": 6, "berlin": 6, "heidelberg": 6, "isbn": 6, "3387533354": 6, "difficulti": [7, 17], "process": [7, 14, 18, 20], "gp": [7, 10], "support": 7, "svm": 7, "cubic": [7, 24], "datapoint": 7, "prohibit": 7, "modestli": 7, "dataset": 7, "wealth": 7, "option": 7, "rahimi": 7, "et": [7, 9, 18, 23], "al": [7, 9, 18, 23], "2007": 7, "stationari": 7, "effici": [7, 9], "min": [7, 22], "covari": 7, "easi": [7, 9], "frequenc": 7, "slightli": [7, 10, 11, 24], "abus": 7, "symbol": [7, 24, 26, 27], "explicitli": [7, 8], "zeta_": 7, "resolv": [7, 9], "re": [7, 27], "manipul": [7, 16], "interpret": 7, "clarifi": [7, 10], "phi": [7, 9, 17, 18], "2b": 7, "z_": [7, 8, 18], "omega_m": 7, "phi_m": 7, "lower": [7, 17], "averag": [7, 8, 12, 19], "omega_1": 7, "phi_1": [7, 18], "ident": [7, 9, 12, 14, 18], "regressor": 7, "question": [7, 9, 10, 12], "word": [3, 7, 8, 10], "grimmett": [7, 18, 21, 22, 23], "2020": 7, "obei": 7, "input": [7, 10, 24, 26, 27], "decai": 7, "whole": [7, 10, 11], "stronger": 7, "compact": 7, "eq": [7, 9], "laplac": 7, "cauchi": 7, "sample_rff": 7, "lengthscal": [7, 9], "coeffici": [7, 9, 14], "num_funct": 7, "num_featur": 7, "dimens": 7, "data": [7, 8, 12], "x_dim": 7, "omega_shap": 7, "elif": 7, "standard_cauchi": 7, "weight": [7, 12], "low": 7, "einsum": 7, "sfd": 7, "nd": 7, "sfn": 7, "sf": 7, "sn": 7, "200": 7, "locat": [7, 9], "toi": 7, "noisi": 7, "sinusoid": 7, "gap": 7, "qualiti": 7, "uncertainti": 7, "purposefulli": 7, "5000": 7, "quit": [7, 9], "slow": 7, "rff_posterior": 7, "randomli": 7, "bishop": 7, "prml": 7, "2006": 7, "x_data": 7, "y_data": 7, "x_pred": 7, "num_data": 7, "x_full": 7, "features_pr": 7, "features_data": 7, "iS": 7, "ey": 7, "mean_pr": 7, "linalg": 7, "var_pr": 7, "fn": 7, "helper": 7, "exact_gp_posterior": 7, "rasmussen": 7, "2003": 7, "x1": 7, "x2": 7, "diff": [7, 9], "l2": 7, "cov": [7, 17], "l1": 7, "ab": [7, 17, 24, 26], "kdd": 7, "kpd": 7, "kpp": 7, "diag": 7, "milisecond": 7, "execut": 7, "oppos": 7, "longer": [7, 24], "cpu": 7, "sy": 7, "17": [], "total": [7, 12, 19], "12": 7, "wall": 7, "181": [], "ms": 7, "91": [], "272": [], "68": [], "sensibl": [7, 11, 15], "faster": [7, 9], "posterior": [7, 9], "roughli": 7, "match": [7, 14], "quicker": 7, "fint": 7, "basi": 7, "degre": [7, 15], "freedom": [7, 15], "situat": 7, "pin": 7, "clump": 7, "signiticantli": 7, "speedup": 7, "overfit": 7, "allevi": 7, "defeat": 7, "cheap": [7, 9], "nm": 7, "wilson": 7, "spars": 7, "train": [7, 8], "bis06": 7, "christoph": 7, "pattern": 7, "recognit": 7, "gri20": 7, "david": 7, "geoffrei": 7, "stirzak": [7, 18, 21, 22], "oxford": [7, 18, 23], "univers": [7, 18, 23], "press": [7, 18, 23], "rr": 7, "ali": 7, "benjamin": 7, "recht": 7, "nip": 7, "ras03": 7, "carl": 7, "edward": 7, "summer": 7, "school": 7, "63": 7, "71": 7, "wbt": 7, "20": 7, "jame": 7, "viacheslav": 7, "borovitskii": 7, "alexand": 7, "terenin": 7, "peter": [7, 8], "mostowski": 7, "marc": 7, "deisenroth": 7, "due": 8, "hyvarinen": 8, "hyv": 8, "\u00e4": 8, "rinen": 8, "dayan": 8, "2005": 8, "probabilist": 8, "likelihood": 8, "theta": 8, "q_": [8, 9, 24, 26], "normalis": [8, 12, 15, 21], "field": [8, 9], "notic": 8, "gradient": 8, "elimin": [8, 27], "nabla": [8, 9], "psi_": 8, "p_d": 8, "psi_d": 8, "almost": 8, "formalis": [8, 17, 27], "maximum": [8, 24], "Is": [8, 10, 11, 21], "substitut": [8, 17, 19, 20, 27], "const": 8, "propto": 8, "confirm": 8, "hypothesis": 8, "behaviour": [8, 19, 22], "recov": 8, "idealis": 8, "challeng": [8, 9, 10, 26], "expand": [8, 27], "norm": 8, "latter": [8, 18, 27], "irrelev": 8, "optimis": [8, 9], "inaccess": 8, "rewritten": [8, 17], "differenti": [8, 17, 21], "weak": 8, "regular": [8, 24, 27], "writtten": 8, "partial_i": 8, "subscript": [8, 9, 10, 19], "entri": [8, 10, 24], "replac": [8, 24, 27], "sampl": [8, 9, 10, 15], "hyvarinend05": 8, "aapo": 8, "journal": 8, "research": 8, "complic": [9, 11], "difficult": 9, "neural": 9, "network": 9, "great": [9, 23], "devis": 9, "broadli": 9, "categori": 9, "infer": 9, "vi": 9, "mcmc": 9, "focu": 9, "former": [9, 18, 27], "seek": 9, "constrain": [9, 20], "famili": [9, 19], "metric": [9, 17], "hopefulli": [9, 18], "decent": 9, "aspect": [9, 14], "liu": 9, "wang": 9, "2019": 9, "wihtout": 9, "constraint": [9, 20], "minimis": [9, 18], "heavi": 9, "evolv": [9, 19], "bring": 9, "restrict": [9, 22], "rapidli": 9, "map": [9, 10, 11, 12, 16, 17, 24], "smooth": 9, "nabla_": 9, "trace": 9, "_p": 9, "nabla_x": 9, "dz": [9, 15], "conveni": [3, 9, 13], "det": 9, "computation": 9, "version": [9, 13, 15, 18, 21, 22, 24], "reproduc": 9, "hilbert": 9, "rkh": 9, "inner": 9, "langl": 9, "rangle_": 9, "_d": 9, "dimension": [9, 10], "f_d": 9, "g_d": 9, "2016": 9, "maximis": [9, 17], "beta_d": 9, "x_d": 9, "rangl": 9, "_q": 9, "proport": [9, 18], "postiv": 9, "_n": [9, 21, 26], "x_m": [9, 22], "surprisingli": [9, 26], "semidefinit": 9, "attent": 9, "svgd_grad": 9, "tensorflow": 9, "batch": 9, "jacobian": 9, "quad": 9, "reduce_sum": 9, "logprob": 9, "float32": 9, "gradienttap": 9, "persist": 9, "tape": 9, "watch": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 24, 25, 26, 27, 28], "logp": 9, "dlogp": 9, "dk": 9, "batch_jacobian": 9, "svg": 9, "modest": 9, "bimod": 9, "someth": [9, 10], "stuck": 9, "local": [9, 12], "optimum": 9, "guarante": [9, 10, 26, 27], "regard": 9, "flexibl": 9, "llj16": 9, "qiang": 9, "jason": 9, "lee": 9, "michael": [9, 25], "jordan": 9, "discrep": 9, "fit": 9, "test": 9, "intern": 9, "confer": 9, "276": 9, "284": 9, "pmlr": 9, "lw19": 9, "dilin": 9, "arxiv": 9, "1608": 9, "04471": 9, "calculu": 11, "outcom": [11, 12, 15, 16], "member": [11, 24], "elementari": [11, 12], "die": 11, "toss": [11, 12], "experiment": [11, 12], "atom": [11, 26], "natur": [11, 12, 19], "bigcup": [11, 13, 19], "infty_": [11, 14, 15, 16, 17, 19, 20, 21, 22], "a_i": [11, 22, 24, 27], "consequ": [11, 14, 17], "assign": [11, 12], "triplet": 11, "object": 11, "basic": [11, 15], "belief": [11, 12], "updat": [11, 12], "divis": [11, 21, 24], "never": [10, 11], "meaningless": 11, "condition": [11, 20], "calcul": [11, 13], "easier": [11, 26], "b_1": [11, 12, 20, 24, 26], "b_2": [11, 12, 20], "b_n": [11, 20, 26], "sum_n": [11, 13], "experss": 11, "b_k": [11, 12, 20, 24], "summari": 12, "event": [12, 13, 16, 19, 20, 21, 22], "profit": 12, "gambl": 12, "game": 12, "statemet": 12, "p_x": [12, 13, 15], "shorthand": [12, 26], "rigor": 12, "construct": [12, 26, 27], "declar": 12, "s_i": [12, 24, 27], "pi_i": [12, 22], "collectioin": 12, "powerset": 12, "appeal": 12, "forget": 12, "coin": 12, "simplest": 12, "paramt": 12, "buse": 12, "stop": [12, 22], "bu": 12, "pq": [12, 20], "until": [12, 24, 26, 27], "head": [10, 12], "success": 12, "failur": 12, "nq": 12, "count": [12, 13], "perfectli": 12, "grant": 12, "appart": 12, "particularli": 12, "spread": 12, "sum_k": 12, "univari": 13, "abbrevi": 13, "marginalis": [10, 13], "simplifi": [13, 16, 26], "previous": [13, 16, 27], "concept": [13, 26], "p_y": 13, "xy": [13, 24, 26], "tool": [13, 14, 17, 18], "1_": 13, "1_a": 13, "a_": [13, 20, 27], "n_1": [10, 13], "n_2": 13, "bigcap_n": 13, "prod_": [13, 21], "discret": [14, 15, 16, 19], "mass": 14, "vice": 14, "versa": 14, "straightforwardli": 14, "u_0": [14, 20], "g_x": 14, "p_0": [14, 21], "pmf": [14, 15, 16, 19], "g_y": 14, "ps": 14, "qs": 14, "summaris": 14, "higher": 14, "g_": [14, 19, 26], "against": 14, "inspect": 14, "especi": 14, "branch": 14, "uncount": 15, "f_x": [15, 16], "rough": 15, "counterpart": [15, 16], "x_w": 15, "convolut": 15, "f_": [15, 16, 22, 24], "volum": [3, 15], "strictli": [15, 17, 18], "speak": 15, "modulo": 15, "f_y": [15, 16], "dy": [15, 16, 21], "sign": [15, 17], "front": 15, "treat": [15, 19], "analogu": [15, 16], "xf_x": 15, "law": [15, 19], "subconsci": 15, "statistician": 15, "straightforward": 15, "accur": 15, "simultan": 16, "y_1": [10, 16, 18, 22, 24], "y_2": [16, 18], "unrel": 16, "consider": 16, "jointli": 16, "f_z": 16, "biject": 16, "vmatrix": 16, "invert": [10, 16], "worri": 16, "broader": 17, "extent": 17, "quantifi": 17, "multipli": [17, 22], "rho": [17, 21], "bear": 17, "mind": 17, "uv": [17, 27], "root": [17, 19], "su": 17, "quadrat": 17, "4ac": 17, "m_x": 17, "tx": [17, 18], "neighbourhood": [17, 18], "m_": [10, 17, 18], "m_y": 17, "seen": 17, "2t": [17, 19], "threshold": 17, "chebyshev": 17, "kei": [3, 17, 26], "concav": 17, "tu": 17, "flip": 17, "l_w": 17, "r_w": 17, "trivial": [10, 17, 19], "phi_x": 17, "itx": 17, "phi_i": 17, "ax": [17, 18], "phi_z": 17, "itb": 17, "phi_": [17, 21], "itz": 17, "itax": 17, "iti": 17, "radoom": 17, "pdf": [17, 22], "fourier": 17, "meaning": 18, "du": 18, "m_1": [18, 24, 26], "m_2": [18, 24, 26], "m_n": 18, "tz_n": 18, "m_u": 18, "ts_n": 18, "tan": 18, "logarithm": 18, "weakli": 18, "criterion": [18, 26], "avoid": [18, 21], "textbook": [18, 21, 25], "1986": [18, 23], "switch": 18, "role": 18, "diagram": [18, 26], "yellow": 18, "pink": 18, "region": 18, "orang": 18, "white": 18, "z_0": 18, "presenc": 18, "darker": 18, "border": 18, "indic": [18, 26], "cyan": 18, "explan": 18, "coverg": 18, "phi_2": 18, "phi_n": 18, "gww86": [18, 23], "welsh": [18, 23], "clarendon": [18, 23], "gs01": 18, "391": 18, "brief": 19, "digress": 19, "nomad": 19, "At": [19, 24], "di": 19, "birth": 19, "descend": 19, "p_k": [19, 21], "neat": 19, "g_0": 19, "g_t": 19, "proabil": 19, "born": 19, "pgf": [19, 21], "surpris": 19, "ds": 19, "ever": [19, 20], "e_t": 19, "answer": [10, 19, 24], "e_0": [3, 19], "eta": 19, "necessari": 19, "surviv": 19, "radiu": 19, "convex": 19, "graph": [10, 19], "intesect": 19, "strict": [19, 27], "sigma_": [10, 19, 26, 27], "proceed": [19, 21, 22], "sigma_t": 19, "geometr": [19, 22], "stochast": [20, 21, 22], "s_": [20, 24, 27], "s_0": [20, 27], "asymmetr": 20, "2m": [20, 26], "odd": 20, "backward": 20, "foward": 20, "henc": 20, "u_": [20, 27], "transient": [20, 22], "revisit": 20, "eventu": 20, "u_m": 20, "4pq": 20, "gambler": 20, "ruin": 20, "absorb": [20, 22], "barrier": 20, "boundari": [20, 21], "unconstrain": 20, "alreadi": [20, 24, 26, 27], "n_t": 21, "n_0": 21, "nondecreas": 21, "z_1": 21, "z_2": 21, "b_": [21, 26], "bernoulli": 21, "tupl": [21, 26, 27], "nh": 21, "distrbut": 21, "characterist": 21, "iub_": 21, "iu": 21, "adapt": 21, "dure": [21, 24], "monoton": 21, "m_t": 21, "popul": 21, "m_0": 21, "organ": 21, "subtract": [3, 21], "p_i": 21, "l_t": 21, "activ": 21, "l_0": 21, "extinct": 21, "q_t": 21, "custom": 21, "queu": 21, "q_0": [21, 24, 26, 27], "manner": 21, "servic": 21, "steadi": 21, "pi_2": 21, "homogeneu": 22, "lambda_i": 22, "homogen": 22, "inhomogen": 22, "factoris": 22, "lambda_": 22, "chapman": 22, "kolmogorov": 22, "holmogorov": 22, "mahtbb": 22, "commun": 22, "leftrightarrow": 22, "irreduc": 22, "passag": 22, "probabilit": 22, "t_j": 22, "recurr": 22, "delta_": [22, 24], "gen": 22, "func": 22, "transienc": 22, "belong": 22, "polya": 22, "hit": 22, "absorpt": 22, "earliest": [22, 26], "minim": 22, "h_j": 22, "k_i": 22, "h_i": 22, "k_j": 22, "y_0": 22, "y_k": 22, "care": 22, "visit": 22, "v_i": 22, "t_i": 22, "hspace": 22, "1cm": 22, "mu_i": 22, "null": 22, "period": 22, "d_i": 22, "gcd": 22, "aperiod": [22, 24], "pi_j": 22, "irrespect": 22, "y_n": [10, 22], "hat": 22, "matric": [10, 22], "statisfi": 22, "connect": [22, 26], "pi_v": 22, "meant": 23, "condens": 23, "format": [23, 28], "mistak": [23, 24, 25], "mine": 23, "sipser": [24, 25], "dfa": [24, 26, 27], "aabb": 24, "string": [24, 27], "q_1": [24, 26], "q_2": [24, 26], "q_4": 24, "q_3": 24, "finish": 24, "fsa": 24, "delta_1": [24, 26], "delta_2": [24, 26], "nfa": [24, 27], "convert": [24, 27], "singla": 24, "languag": 24, "ba": 24, "aaa": 24, "aba": [24, 26], "bab": 24, "bb": 24, "abab": 24, "aa": [24, 26], "abba": 24, "recognis": [24, 27], "nondeterminist": 24, "sigma_3": 24, "column": [10, 24], "row": [10, 24], "keep": [24, 28], "track": [24, 28], "carri": 24, "oper": 24, "q_i": [24, 26], "mod": 24, "check": 24, "3a_1": 24, "q_e": 24, "q_l": 24, "perfect": 24, "shuffl": 24, "b_i": 24, "m_a": 24, "q_a": [24, 26], "delta_a": 24, "f_a": 24, "q_b": 24, "delta_b": 24, "f_b": 24, "texttt": [24, 27], "dropout": 24, "remov": [24, 26, 27], "xz": 24, "xyz": [24, 26], "copi": 24, "overset": 24, "m_b": 24, "m_c": 24, "loop": 24, "wx": 24, "reachabl": 24, "palindrom": 24, "wtw": 24, "pump": 24, "nz": [24, 26], "unequ": 24, "trail": 24, "essenti": 24, "a_4": 24, "nk": 24, "wt": 24, "2p": 24, "3z": 24, "xw_1": 24, "w_2w_1": 24, "w_2z": 24, "substr": [24, 26, 27], "2z": 24, "01": 24, "distinguish": 24, "wherebi": 24, "yz": 24, "indistinguish": 24, "equiv_l": 24, "reflexivti": 24, "symmetri": 24, "zx": 24, "zy": 24, "supos": 24, "wz": 24, "pairwis": 24, "moreov": 24, "greater": [24, 26], "pigeonhol": [24, 26], "indistiguish": 24, "beacus": 24, "s_j": 24, "alphabet": [24, 26, 27], "xa": 24, "regardless": [10, 24], "ya": 24, "outsid": 24, "\u010dern\u00fd": 24, "who": 24, "conjectur": 24, "synchronis": 24, "shitov": 24, "1654": 24, "eppstein": 24, "gave": 24, "polynomi": 24, "trahtman": 24, "home": 24, "q_j": [24, 26], "shorten": 24, "fed": 24, "ij": [10, 24], "marker": 24, "enter": [24, 26], "stai": 24, "join": [24, 26], "split": 24, "rest": 24, "q_n": 24, "rotat": 24, "rc": 24, "yx": 24, "cyclic": 24, "permut": 24, "q_m": 24, "add": [24, 27], "individu": 24, "break": [24, 26], "stage": 24, "x_p": 24, "suffix": 24, "termin": [24, 26, 27], "y_q": 24, "prefix": 24, "conclus": 24, "threfor": 24, "lectur": 25, "video": 25, "record": 25, "fault": 25, "slowli": 26, "abstract": 26, "memori": 26, "circl": 26, "arrow": 26, "mark": 26, "init": 26, "doubl": 26, "r_0": [26, 27], "b_0": 26, "_s": 26, "swap": 26, "feed": 26, "b_m": 26, "_m": 26, "myhil": 26, "nerod": 26, "unari": 26, "facilit": 26, "parallel": 26, "recur": 26, "theme": 26, "across": 26, "outgo": 26, "whether": [10, 26], "abb": 26, "aab": 26, "rabin": 26, "scott": 26, "1959": 26, "decis": 26, "scienc": 26, "perhap": [10, 26], "liter": 26, "view": 26, "old": 26, "aforement": 26, "composit": 26, "gnfa": 26, "w_k": 26, "main": 26, "increment": 26, "annot": 26, "repeatedli": 26, "g_k": 26, "output": 26, "r_1r_2": 26, "r_3": 26, "r_4": 26, "effect": 26, "repetit": 26, "vacuous": 26, "recogns": 26, "q_0q_1": 26, "correspondng": 26, "cgg": 27, "terminolog": [3, 27], "onto": 27, "uav": 27, "uwv": 27, "equiv": 27, "coupl": 27, "pars": 27, "tree": 27, "node": [10, 27], "edg": [10, 27], "0011": 27, "parser": 27, "program": 27, "succinctli": 27, "inher": 27, "bc": 27, "permit": 27, "unit": 27, "proper": 27, "occurr": 27, "occcur": 27, "delet": 27, "uavaw": 27, "uvaw": 27, "uavw": 27, "uvw": 27, "unless": 27, "rull": 27, "u_i": 27, "preceed": 27, "nondetermin": 27, "somewhat": 27, "stack": 27, "gamma_": 27, "funciton": 27, "acccept": 27, "w_1w_2": 27, "w_m": 27, "w_i": 27, "r_m": 27, "s_m": 27, "bt": 27, "uvxyz": 27, "ixi": 27, "iz": 27, "vy": 27, "vxy": 27, "k1": 27, "k2": 27, "andd": 27, "push": 27, "pop": 27, "star": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 24, 25, 27, 28], "welcom": 28, "walk": 28, "maintain": 28, "websit": 28, "primarili": 28, "myself": 28, "anywher": 28, "upgrad": 28, "yet": 28, "soon": 28, "transfer": 28, "couldn": 10, "wrap": 10, "cut": 10, "don": 10, "y_": 10, "repsect": 10, "dy_": 10, "boldsymbol": 10, "multivari": 10, "phantom": 10, "pmatrix": 10, "mbc": 10, "topm": [], "oberv": 10, "inconsist": 10, "wise": 10, "global": 10, "subtler": 10, "wrong": 10, "submatrix": 10, "queri": 10, "n_l": 10, "n_i": 10, "defint": 10, "master": 10, "expens": 10, "nevertheless": 10, "structur": 10, "came": 3, "generalis": 3, "additv": 3, "tripl": 3, "d_1": 3, "d_k": 3, "d_2": 3, "e_j": 3, "41": [], "35": [], "223": [], "151": [], "374": [], "110": [], "30": 4, "218": 4, "33": [], "9": [], "29": [], "237": [], "375": [], "96": [], "202": 7, "105": 7, "308": 7, "78": 7, "7": 7}, "objects": {}, "objtypes": {}, "objnames": {}, "titleterms": {"exercis": [0, 24], "chapter": [0, 24], "1": [0, 17, 24], "A": [0, 2, 26, 27], "2": [0, 24], "3": 0, "4": 0, "5": 0, "6": 0, "7": 0, "8": 0, "9": 0, "10": 0, "c": [0, 18], "11": [0, 24], "12": 0, "d": 0, "masur": 1, "integr": [1, 2, 6], "real": 1, "analysi": 1, "riemann": 2, "partit": [2, 11, 12], "infimum": [2, 3], "supremum": [2, 3], "upper": 2, "lower": [2, 4], "sum": [2, 13, 14, 16, 17], "inequ": [2, 17, 18], "leq": 2, "continu": [2, 3, 15, 16, 18, 21], "function": [2, 3, 6, 10, 12, 13, 14, 15, 16, 17, 18, 19], "ar": [2, 3], "bound": [2, 4], "defici": 2, "doe": 2, "work": 2, "unbound": 2, "limit": [2, 3, 18], "pointwis": [2, 3], "interchang": 2, "measur": [3, 11], "outer": 3, "definit": [3, 13, 14], "length": 3, "an": [3, 23], "open": 3, "interv": 3, "good": 3, "properti": [3, 15, 17, 21, 22, 26], "countabl": 3, "set": 3, "have": 3, "zero": 3, "preserv": 3, "order": [3, 6], "translat": 3, "invari": [3, 22], "subaddit": 3, "hein": 3, "borel": 3, "theorem": [3, 7, 11, 12, 17, 18, 24], "cover": 3, "finit": [3, 26], "subcov": 3, "close": [3, 27], "nontrivi": 3, "uncount": 3, "nonaddit": 3, "ration": 3, "differ": 3, "equival": [3, 8], "relat": 3, "addit": 3, "contain": 3, "disjoint": 3, "space": [3, 11, 12], "nonexist": 3, "extens": 3, "all": 3, "subset": 3, "mathbb": 3, "r": 3, "sigma": 3, "algebra": 3, "other": 3, "smallest": 3, "collect": 3, "invers": [3, 17], "imag": 3, "composit": 3, "condit": [3, 11, 12, 16], "everi": 3, "increas": 3, "oper": [3, 26], "s": [3, 6, 7, 17, 18], "anneal": 4, "import": 4, "sampl": [4, 6, 7, 11], "weight": 4, "varianc": [4, 7, 12], "mcmc": 4, "algorithm": 4, "implement": [4, 7, 9], "toi": 4, "experi": 4, "conclus": [4, 7, 9], "refer": [4, 6, 7, 8, 9, 18, 19, 21, 22, 23], "stream": 5, "numer": 6, "simul": 6, "sde": 6, "why": [6, 10], "stochast": [6, 19], "differenti": 6, "equat": 6, "The": [6, 7, 8, 21], "wiener": 6, "process": [6, 19, 21], "from": [6, 7, 14], "evalu": 6, "euler": 6, "maruyama": 6, "method": 6, "strong": [6, 22], "weak": [6, 18], "converg": [6, 7, 18, 22], "milstein": 6, "higher": 6, "chain": [6, 22], "rule": [6, 11], "ito": 6, "result": [6, 12], "one": 6, "dimens": 6, "random": [7, 12, 13, 14, 15, 20, 22], "fourier": 7, "featur": 7, "rff": 7, "approxim": [7, 9], "bochner": 7, "bayesian": 7, "regress": 7, "rate": 7, "hoeffd": 7, "uniform": [7, 15, 17], "prior": 7, "starvat": 7, "estim": 8, "score": 8, "match": 8, "trick": 8, "object": 8, "iff": [8, 13, 16], "distribut": [8, 12, 13, 14, 15, 16, 18, 22], "form": [8, 27], "j": 8, "stein": 9, "variat": 9, "gradient": 9, "descent": 9, "deriv": [9, 14, 17, 27], "svgd": 9, "invert": 9, "transform": [9, 18], "direct": 9, "steepest": 9, "proof": 9, "kl": 9, "ksd": 9, "empir": 9, "demo": 9, "mixtur": 9, "gaussian": 9, "failur": 9, "mode": 9, "event": 11, "probabl": [11, 12, 13, 14, 15, 18, 19, 23], "independ": [11, 13, 14, 16, 17], "probabiil": 11, "bay": 11, "discret": [12, 13], "variabl": [12, 13, 14, 15, 16], "mass": [12, 13], "pmf": [12, 13], "impli": [12, 14, 17, 18, 26], "fundament": 12, "bernoulli": [12, 14], "binomi": [12, 14], "poisson": [12, 14, 21], "geometr": [12, 14], "neg": [12, 14], "expect": [12, 13, 15, 16], "law": [12, 13, 16, 18], "subconsci": [12, 13, 16], "statistician": [12, 13, 16], "two": [12, 17], "multivari": [13, 16], "joint": [13, 16], "factoris": [13, 14, 16, 17], "product": [13, 16], "convolut": [13, 16], "formula": [13, 14, 16], "indic": 13, "gener": [14, 17, 19, 27], "uniqu": [14, 17], "pgf": 14, "exampl": [14, 17, 27], "moment": [14, 17], "g": 14, "densiti": [15, 16], "exponenti": [15, 17], "normal": [15, 17, 27], "cauchi": [15, 17], "gamma": [15, 17], "beta": 15, "chi": 15, "squar": [15, 18], "pdf": [15, 16], "chang": 16, "jacobian": 16, "iter": 16, "covari": [10, 17], "correl": 17, "coeffici": 17, "between": 17, "schwartz": 17, "equal": 17, "mgf": [17, 18], "markov": [17, 22], "jensen": 17, "convex": 17, "support": 17, "tangent": 17, "characterist": [17, 18], "main": 18, "mean": [18, 19], "larg": 18, "number": 18, "chebyshev": 18, "central": 18, "deviat": 18, "fenchel": 18, "legendr": 18, "branch": 19, "branc": 19, "popul": 19, "ultim": 19, "extinct": 19, "walk": [20, 22], "simpl": [20, 21], "recurr": 20, "transienc": 20, "absorpt": 20, "time": [21, 22], "arriv": 21, "inter": 21, "lack": 21, "memori": 21, "birth": 21, "death": 21, "first": 21, "come": 21, "serv": 21, "queue": 21, "classif": 22, "state": [22, 26], "equilibrium": 22, "revers": 22, "graph": 22, "introduct": 23, "excercis": 24, "20": 24, "31": 24, "32": 24, "33": 24, "34": 24, "41": 24, "43": 24, "44": 24, "45": 24, "46": 24, "47": 24, "48": 24, "51": 24, "52": 24, "myhil": 24, "nerod": 24, "59": 24, "63": 24, "67": 24, "theori": 25, "comput": 25, "automata": [26, 27], "regular": 26, "express": [26, 27], "automaton": [26, 27], "fsa": 26, "string": 26, "languag": [26, 27], "accept": [26, 27], "recognis": 26, "some": 26, "closur": 26, "union": [3, 26], "under": [26, 27], "nondetermin": 26, "nondeterminist": 26, "nfa": 26, "concaten": 26, "star": 26, "equiv": 26, "yield": [26, 27], "generalis": 26, "can": 26, "written": 26, "texttt": 26, "convert": 26, "laguag": 26, "pump": [26, 27], "lemma": [26, 27], "pda": 27, "context": 27, "free": 27, "grammar": 27, "cfg": 27, "mathemat": 27, "leftmost": 27, "ambigu": 27, "chomski": 27, "cfl": 27, "pushdown": 27, "non": 27, "intersect": 27, "home": 28, "precis": 10, "consist": 10, "infti": 3, "suffici": 3, "sequenc": 3, "paper": 5}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinxcontrib.bibtex": 9, "sphinx": 56}}) \ No newline at end of file