-
Notifications
You must be signed in to change notification settings - Fork 213
/
adc.rs
1614 lines (1504 loc) · 56.2 KB
/
adc.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! Analog to digital converter configuration.
//! According to CubeMx, all STM32F4 chips use the same ADC IP so this should be correct for all variants.
#![deny(missing_docs)]
/*
Currently unused but this is the formula for using temperature calibration:
Temperature in °C = (110-30)/(VtempCal110::get().read()-VtempCal30::get().read()) * (adc_sample - VtempCal30::get().read()) + 30
*/
use crate::{gpio::*, signature::VrefCal, signature::VDDA_CALIB, stm32};
use core::fmt;
use embedded_hal::adc::{Channel, OneShot};
/// Vref internal signal, used for calibration
pub struct Vref;
/// Vbat internal signal, used for monitoring the battery (if used)
pub struct Vbat;
/// Core temperature internal signal
pub struct Temperature;
macro_rules! adc_pins {
($($pin:ty => ($adc:ident, $chan:expr)),+ $(,)*) => {
$(
impl Channel<stm32::$adc> for $pin {
type ID = u8;
fn channel() -> u8 { $chan }
}
)+
};
}
/// Contains types related to ADC configuration
pub mod config {
/// The place in the sequence a given channel should be captured
#[derive(Debug, PartialEq, PartialOrd, Copy, Clone)]
pub enum Sequence {
/// 1
One,
/// 2
Two,
/// 3
Three,
/// 4
Four,
/// 5
Five,
/// 6
Six,
/// 7
Seven,
/// 8
Eight,
/// 9
Nine,
/// 10
Ten,
/// 11
Eleven,
/// 12
Twelve,
/// 13
Thirteen,
/// 14
Fourteen,
/// 15
Fifteen,
/// 16
Sixteen,
}
impl From<Sequence> for u8 {
fn from(s: Sequence) -> u8 {
match s {
Sequence::One => 0,
Sequence::Two => 1,
Sequence::Three => 2,
Sequence::Four => 3,
Sequence::Five => 4,
Sequence::Six => 5,
Sequence::Seven => 6,
Sequence::Eight => 7,
Sequence::Nine => 8,
Sequence::Ten => 9,
Sequence::Eleven => 10,
Sequence::Twelve => 11,
Sequence::Thirteen => 12,
Sequence::Fourteen => 13,
Sequence::Fifteen => 14,
Sequence::Sixteen => 15,
}
}
}
impl From<u8> for Sequence {
fn from(bits: u8) -> Self {
match bits {
0 => Sequence::One,
1 => Sequence::Two,
2 => Sequence::Three,
3 => Sequence::Four,
4 => Sequence::Five,
5 => Sequence::Six,
6 => Sequence::Seven,
7 => Sequence::Eight,
8 => Sequence::Nine,
9 => Sequence::Ten,
10 => Sequence::Eleven,
11 => Sequence::Twelve,
12 => Sequence::Thirteen,
13 => Sequence::Fourteen,
14 => Sequence::Fifteen,
15 => Sequence::Sixteen,
_ => unimplemented!(),
}
}
}
/// The number of cycles to sample a given channel for
#[derive(Debug, PartialEq, Copy, Clone)]
pub enum SampleTime {
/// 3 cycles
Cycles_3,
/// 15 cycles
Cycles_15,
/// 28 cycles
Cycles_28,
/// 56 cycles
Cycles_56,
/// 84 cycles
Cycles_84,
/// 112 cycles
Cycles_112,
/// 144 cycles
Cycles_144,
/// 480 cycles
Cycles_480,
}
impl From<u8> for SampleTime {
fn from(f: u8) -> SampleTime {
match f {
0 => SampleTime::Cycles_3,
1 => SampleTime::Cycles_15,
2 => SampleTime::Cycles_28,
3 => SampleTime::Cycles_56,
4 => SampleTime::Cycles_84,
5 => SampleTime::Cycles_112,
6 => SampleTime::Cycles_144,
7 => SampleTime::Cycles_480,
_ => unimplemented!(),
}
}
}
impl From<SampleTime> for u8 {
fn from(l: SampleTime) -> u8 {
match l {
SampleTime::Cycles_3 => 0,
SampleTime::Cycles_15 => 1,
SampleTime::Cycles_28 => 2,
SampleTime::Cycles_56 => 3,
SampleTime::Cycles_84 => 4,
SampleTime::Cycles_112 => 5,
SampleTime::Cycles_144 => 6,
SampleTime::Cycles_480 => 7,
}
}
}
/// Clock config for the ADC
/// Check the datasheet for the maximum speed the ADC supports
#[derive(Debug, Clone, Copy)]
pub enum Clock {
/// PCLK2 (APB2) divided by 2
Pclk2_div_2,
/// PCLK2 (APB2) divided by 4
Pclk2_div_4,
/// PCLK2 (APB2) divided by 6
Pclk2_div_6,
/// PCLK2 (APB2) divided by 8
Pclk2_div_8,
}
impl From<Clock> for u8 {
fn from(c: Clock) -> u8 {
match c {
Clock::Pclk2_div_2 => 0,
Clock::Pclk2_div_4 => 1,
Clock::Pclk2_div_6 => 2,
Clock::Pclk2_div_8 => 3,
}
}
}
/// Resolution to sample at
#[derive(Debug, Clone, Copy)]
pub enum Resolution {
/// 12-bit
Twelve,
/// 10-bit
Ten,
/// 8-bit
Eight,
/// 6-bit
Six,
}
impl From<Resolution> for u8 {
fn from(r: Resolution) -> u8 {
match r {
Resolution::Twelve => 0,
Resolution::Ten => 1,
Resolution::Eight => 2,
Resolution::Six => 3,
}
}
}
/// Possible external triggers the ADC can listen to
#[derive(Debug, Clone, Copy)]
pub enum ExternalTrigger {
/// TIM1 compare channel 1
Tim_1_cc_1,
/// TIM1 compare channel 2
Tim_1_cc_2,
/// TIM1 compare channel 3
Tim_1_cc_3,
/// TIM2 compare channel 2
Tim_2_cc_2,
/// TIM2 compare channel 3
Tim_2_cc_3,
/// TIM2 compare channel 4
Tim_2_cc_4,
/// TIM2 trigger out
Tim_2_trgo,
/// TIM3 compare channel 1
Tim_3_cc_1,
/// TIM3 trigger out
Tim_3_trgo,
/// TIM4 compare channel 4
Tim_4_cc_4,
/// TIM5 compare channel 1
Tim_5_cc_1,
/// TIM5 compare channel 2
Tim_5_cc_2,
/// TIM5 compare channel 3
Tim_5_cc_3,
/// External interupt line 11
Exti_11,
}
impl From<ExternalTrigger> for u8 {
fn from(et: ExternalTrigger) -> u8 {
match et {
ExternalTrigger::Tim_1_cc_1 => 0b0000,
ExternalTrigger::Tim_1_cc_2 => 0b0001,
ExternalTrigger::Tim_1_cc_3 => 0b0010,
ExternalTrigger::Tim_2_cc_2 => 0b0011,
ExternalTrigger::Tim_2_cc_3 => 0b0100,
ExternalTrigger::Tim_2_cc_4 => 0b0101,
ExternalTrigger::Tim_2_trgo => 0b0110,
ExternalTrigger::Tim_3_cc_1 => 0b0111,
ExternalTrigger::Tim_3_trgo => 0b1000,
ExternalTrigger::Tim_4_cc_4 => 0b1001,
ExternalTrigger::Tim_5_cc_1 => 0b1010,
ExternalTrigger::Tim_5_cc_2 => 0b1011,
ExternalTrigger::Tim_5_cc_3 => 0b1100,
ExternalTrigger::Exti_11 => 0b1111,
}
}
}
/// Possible trigger modes
#[derive(Debug, Clone, Copy)]
pub enum TriggerMode {
/// Don't listen to external trigger
Disabled,
/// Listen for rising edges of external trigger
RisingEdge,
/// Listen for falling edges of external trigger
FallingEdge,
/// Listen for both rising and falling edges of external trigger
BothEdges,
}
impl From<TriggerMode> for u8 {
fn from(tm: TriggerMode) -> u8 {
match tm {
TriggerMode::Disabled => 0,
TriggerMode::RisingEdge => 1,
TriggerMode::FallingEdge => 2,
TriggerMode::BothEdges => 3,
}
}
}
/// Data register alignment
#[derive(Debug, Clone, Copy)]
pub enum Align {
/// Right align output data
Right,
/// Left align output data
Left,
}
impl From<Align> for bool {
fn from(a: Align) -> bool {
match a {
Align::Right => false,
Align::Left => true,
}
}
}
/// Scan enable/disable
#[derive(Debug, Clone, Copy)]
pub enum Scan {
/// Scan mode disabled
Disabled,
/// Scan mode enabled
Enabled,
}
impl From<Scan> for bool {
fn from(s: Scan) -> bool {
match s {
Scan::Disabled => false,
Scan::Enabled => true,
}
}
}
/// Continuous mode enable/disable
#[derive(Debug, Clone, Copy)]
pub enum Continuous {
/// Single mode, continuous disabled
Single,
/// Continuous mode enabled
Continuous,
}
impl From<Continuous> for bool {
fn from(c: Continuous) -> bool {
match c {
Continuous::Single => false,
Continuous::Continuous => true,
}
}
}
/// DMA mode
#[derive(Debug, Clone, Copy)]
pub enum Dma {
/// No DMA, disabled
Disabled,
/// Single DMA, DMA will be disabled after each conversion sequence
Single,
/// Continuous DMA, DMA will remain enabled after conversion
Continuous,
}
/// End-of-conversion interrupt enabled/disabled
#[derive(Debug, Clone, Copy)]
pub enum Eoc {
/// End-of-conversion interrupt disabled
Disabled,
/// End-of-conversion interrupt enabled per conversion
Conversion,
/// End-of-conversion interrupt enabled per sequence
Sequence,
}
/// Configuration for the adc.
/// There are some additional parameters on the adc peripheral that can be
/// added here when needed but this covers several basic usecases.
#[derive(Debug, Clone, Copy)]
pub struct AdcConfig {
pub(crate) clock: Clock,
pub(crate) resolution: Resolution,
pub(crate) align: Align,
pub(crate) scan: Scan,
pub(crate) external_trigger: (TriggerMode, ExternalTrigger),
pub(crate) continuous: Continuous,
pub(crate) dma: Dma,
pub(crate) end_of_conversion_interrupt: Eoc,
pub(crate) default_sample_time: SampleTime,
}
impl AdcConfig {
/// change the clock field
pub fn clock(mut self, clock: Clock) -> Self {
self.clock = clock;
self
}
/// change the resolution field
pub fn resolution(mut self, resolution: Resolution) -> Self {
self.resolution = resolution;
self
}
/// change the align field
pub fn align(mut self, align: Align) -> Self {
self.align = align;
self
}
/// change the scan field
pub fn scan(mut self, scan: Scan) -> Self {
self.scan = scan;
self
}
/// change the external_trigger field
pub fn external_trigger(
mut self,
trigger_mode: TriggerMode,
trigger: ExternalTrigger,
) -> Self {
self.external_trigger = (trigger_mode, trigger);
self
}
/// change the continuous field
pub fn continuous(mut self, continuous: Continuous) -> Self {
self.continuous = continuous;
self
}
/// change the dma field
pub fn dma(mut self, dma: Dma) -> Self {
self.dma = dma;
self
}
/// change the end_of_conversion_interrupt field
pub fn end_of_conversion_interrupt(mut self, end_of_conversion_interrupt: Eoc) -> Self {
self.end_of_conversion_interrupt = end_of_conversion_interrupt;
self
}
/// change the default_sample_time field
pub fn default_sample_time(mut self, default_sample_time: SampleTime) -> Self {
self.default_sample_time = default_sample_time;
self
}
}
impl Default for AdcConfig {
fn default() -> Self {
Self {
clock: Clock::Pclk2_div_2,
resolution: Resolution::Twelve,
align: Align::Right,
scan: Scan::Disabled,
external_trigger: (TriggerMode::Disabled, ExternalTrigger::Tim_1_cc_1),
continuous: Continuous::Single,
dma: Dma::Disabled,
end_of_conversion_interrupt: Eoc::Disabled,
default_sample_time: SampleTime::Cycles_480,
}
}
}
}
/// Analog to Digital Converter
/// # Status
/// Most options relating to regular conversions are implemented. One-shot and sequences of conversions
/// have been tested and work as expected.
///
/// GPIO to channel mapping should be correct for all supported F4 devices. The mappings were taken from
/// CubeMX. The mappings are feature gated per 4xx device but there are actually sub variants for some
/// devices and some pins may be missing on some variants. The implementation has been split up and commented
/// to show which pins are available on certain device variants but currently the library doesn't enforce this.
/// To fully support the right pins would require 10+ more features for the various variants.
/// ## Todo
/// * Injected conversions
/// * Analog watchdog config
/// * Discontinuous mode
/// # Examples
/// ## One-shot conversion
/// ```
/// use stm32f4xx_hal::{
/// gpio::gpioa,
/// adc::{
/// Adc,
/// config::AdcConfig,
/// config::SampleTime,
/// },
/// };
///
/// let mut adc = Adc::adc1(device.ADC1, true, AdcConfig::default());
/// let pa3 = gpioa.pa3.into_analog();
/// let sample = adc.convert(&pa3, SampleTime::Cycles_480);
/// let millivolts = adc.sample_to_millivolts(sample);
/// info!("pa3: {}mV", millivolts);
/// ```
///
/// ## Sequence conversion
/// ```
/// use stm32f4xx_hal::{
/// gpio::gpioa,
/// adc::{
/// Adc,
/// config::AdcConfig,
/// config::SampleTime,
/// config::Sequence,
/// config::Eoc,
/// config::Scan,
/// config::Clock,
/// },
/// };
///
/// let config = AdcConfig::default()
/// //We'll either need DMA or an interrupt per conversion to convert
/// //multiple values in a sequence
/// .end_of_conversion_interrupt(Eoc::Conversion);
/// //Scan mode is also required to convert a sequence
/// .scan(Scan::Enabled)
/// //And since we're looking for one interrupt per conversion the
/// //clock will need to be fairly slow to avoid overruns breaking
/// //the sequence. If you are running in debug mode and logging in
/// //the interrupt, good luck... try setting pclk2 really low.
/// //(Better yet use DMA)
/// .clock(Clock::Pclk2_div_8);
/// let mut adc = Adc::adc1(device.ADC1, true, config);
/// let pa0 = gpioa.pa0.into_analog();
/// let pa3 = gpioa.pa3.into_analog();
/// adc.configure_channel(&pa0, Sequence::One, SampleTime::Cycles_112);
/// adc.configure_channel(&pa3, Sequence::Two, SampleTime::Cycles_480);
/// adc.configure_channel(&pa0, Sequence::Three, SampleTime::Cycles_112);
/// adc.start_conversion();
/// ```
///
/// ## External trigger
///
/// A common mistake on STM forums is enabling continuous mode but that causes it to start
/// capturing on the first trigger and capture as fast as possible forever, regardless of
/// future triggers. Continuous mode is disabled by default but I thought it was worth
/// highlighting.
///
/// Getting the timer config right to make sure it's sending the event the ADC is listening
/// to can be a bit of a pain but the key fields are highlighted below. Try hooking a timer
/// channel up to an external pin with an LED or oscilloscope attached to check it's really
/// generating pulses if the ADC doesn't seem to be triggering.
/// ```
/// use stm32f4xx_hal::{
/// gpio::gpioa,
/// adc::{
/// Adc,
/// config::AdcConfig,
/// config::SampleTime,
/// config::Sequence,
/// config::Eoc,
/// config::Scan,
/// config::Clock,
/// },
/// };
///
/// let config = AdcConfig::default()
/// //Set the trigger you want
/// .external_trigger(TriggerMode::RisingEdge, ExternalTrigger::Tim_1_cc_1);
/// let mut adc = Adc::adc1(device.ADC1, true, config);
/// let pa0 = gpioa.pa0.into_analog();
/// adc.configure_channel(&pa0, Sequence::One, SampleTime::Cycles_112);
/// //Make sure it's enabled but don't start the conversion
/// adc.enable();
///
/// //Configure the timer
/// let mut tim = Timer::tim1(device.TIM1, 1.hz(), clocks);
/// unsafe {
/// let tim = &(*TIM1::ptr());
///
/// //Channel 1
/// //Disable the channel before configuring it
/// tim.ccer.modify(|_, w| w.cc1e().clear_bit());
///
/// tim.ccmr1_output().modify(|_, w| w
/// //Preload enable for channel
/// .oc1pe().set_bit()
///
/// //Set mode for channel, the default mode is "frozen" which won't work
/// .oc1m().pwm_mode1()
/// );
///
/// //Set the duty cycle, 0 won't work in pwm mode but might be ok in
/// //toggle mode or match mode
/// let max_duty = tim.arr.read().arr().bits() as u16;
/// tim.ccr1.modify(|_, w| w.ccr().bits(max_duty / 2));
///
/// //Enable the channel
/// tim.ccer.modify(|_, w| w.cc1e().set_bit());
///
/// //Enable the TIM main Output
/// tim.bdtr.modify(|_, w| w.moe().set_bit());
/// }
/// ```
#[derive(Clone, Copy)]
pub struct Adc<ADC> {
/// Current config of the ADC, kept up to date by the various set methods
config: config::AdcConfig,
/// The adc peripheral
adc_reg: ADC,
/// VDDA in millivolts calculated from the factory calibration and vrefint
calibrated_vdda: u32,
/// Maximum sample value possible for the configured resolution
max_sample: u32,
}
impl<ADC> fmt::Debug for Adc<ADC> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"Adc: {{ calibrated_vdda: {:?}, max_sample: {:?}, config: {:?}, ... }}",
self.calibrated_vdda, self.max_sample, self.config
)
}
}
macro_rules! adc {
($($adc_type:ident => ($constructor_fn_name:ident, $common_type:ident, $rcc_enr_reg:ident, $rcc_enr_field: ident, $rcc_rst_reg: ident, $rcc_rst_field: ident)),+ $(,)*) => {
$(
impl Adc<stm32::$adc_type> {
/// Enables the ADC clock, resets the peripheral (optionally), runs calibration and applies the supplied config
/// # Arguments
/// * `reset` - should a reset be performed. This is provided because on some devices multiple ADCs share the same common reset
pub fn $constructor_fn_name(adc: stm32::$adc_type, reset: bool, config: config::AdcConfig) -> Adc<stm32::$adc_type> {
unsafe {
let rcc = &(*stm32::RCC::ptr());
//Enable the common clock
rcc.$rcc_enr_reg.modify(|_, w| w.$rcc_enr_field().set_bit());
if reset {
//Reset the peripheral(s)
rcc.$rcc_rst_reg.modify(|_, w| w.$rcc_rst_field().set_bit());
rcc.$rcc_rst_reg.modify(|_, w| w.$rcc_rst_field().clear_bit());
}
}
let mut s = Self {
config,
adc_reg: adc,
calibrated_vdda: VDDA_CALIB,
max_sample: 0,
};
//Probably unnecessary to disable the ADC in most cases but it shouldn't do any harm either
s.disable();
s.apply_config(config);
s.enable();
s.calibrate();
s
}
/// Applies all fields in AdcConfig
pub fn apply_config(&mut self, config: config::AdcConfig) {
self.set_clock(config.clock);
self.set_resolution(config.resolution);
self.set_align(config.align);
self.set_scan(config.scan);
self.set_external_trigger(config.external_trigger);
self.set_continuous(config.continuous);
self.set_dma(config.dma);
self.set_end_of_conversion_interrupt(config.end_of_conversion_interrupt);
self.set_default_sample_time(config.default_sample_time);
}
/// Calculates the system VDDA by sampling the internal VREF channel and comparing
/// the result with the value stored at the factory.
pub fn calibrate(&mut self) {
self.enable();
let vref_en = self.temperature_and_vref_enabled();
if !vref_en {
self.enable_temperature_and_vref();
}
let vref_cal = VrefCal::get().read();
let vref_samp = self.read(&mut Vref).unwrap(); //This can't actually fail, it's just in a result to satisfy hal trait
self.calibrated_vdda = (VDDA_CALIB * u32::from(vref_cal)) / u32::from(vref_samp);
if !vref_en {
self.disable_temperature_and_vref();
}
}
/// Enables the vbat internal channel
pub fn enable_vbat(&self) {
unsafe {
let common = &(*stm32::$common_type::ptr());
common.ccr.modify(|_, w| w.vbate().set_bit());
}
}
/// Enables the vbat internal channel
pub fn disable_vbat(&self) {
unsafe {
let common = &(*stm32::$common_type::ptr());
common.ccr.modify(|_, w| w.vbate().clear_bit());
}
}
/// Enables the temp and vref internal channels.
/// They can't work while vbat is also enabled so this method also disables vbat.
pub fn enable_temperature_and_vref(&mut self) {
//VBAT prevents TS and VREF from being sampled
self.disable_vbat();
unsafe {
let common = &(*stm32::$common_type::ptr());
common.ccr.modify(|_, w| w.tsvrefe().set_bit());
}
}
/// Disables the temp and vref internal channels
pub fn disable_temperature_and_vref(&mut self) {
unsafe {
let common = &(*stm32::$common_type::ptr());
common.ccr.modify(|_, w| w.tsvrefe().clear_bit());
}
}
/// Returns if the temp and vref internal channels are enabled
pub fn temperature_and_vref_enabled(&mut self) -> bool {
unsafe {
let common = &(*stm32::$common_type::ptr());
common.ccr.read().tsvrefe().bit_is_set()
}
}
/// Returns if the adc is enabled
pub fn is_enabled(&self) -> bool {
self.adc_reg.cr2.read().adon().bit_is_set()
}
/// Enables the adc
pub fn enable(&mut self) {
self.adc_reg.cr2.modify(|_, w| w.adon().set_bit());
}
/// Disables the adc
/// # Note
/// The ADC in the f4 has few restrictions on what can be configured while the ADC
/// is enabled. If any bugs are found where some settings aren't "sticking" try disabling
/// the ADC before changing them. The reference manual for the chip I'm using only states
/// that the sequence registers are locked when they are being converted.
pub fn disable(&mut self) {
self.adc_reg.cr2.modify(|_, w| w.adon().clear_bit());
}
/// Starts conversion sequence. Waits for the hardware to indicate it's actually started.
pub fn start_conversion(&mut self) {
self.enable();
self.clear_end_of_conversion_flag();
//Start conversion
self.adc_reg.cr2.modify(|_, w| w.swstart().set_bit());
while !self.adc_reg.sr.read().strt().bit_is_set() {}
}
/// Sets the clock for the adc
pub fn set_clock(&mut self, clock: config::Clock) {
self.config.clock = clock;
unsafe {
let common = &(*stm32::$common_type::ptr());
common.ccr.modify(|_, w| w.adcpre().bits(clock.into()));
}
}
/// Sets the sampling resolution
pub fn set_resolution(&mut self, resolution: config::Resolution) {
self.max_sample = match resolution {
config::Resolution::Twelve => (1 << 12) - 1,
config::Resolution::Ten => (1 << 10) - 1,
config::Resolution::Eight => (1 << 8) - 1,
config::Resolution::Six => (1 << 6) -1,
};
self.config.resolution = resolution;
self.adc_reg.cr1.modify(|_, w| w.res().bits(resolution.into()));
}
/// Sets the DR register alignment to left or right
pub fn set_align(&mut self, align: config::Align) {
self.config.align = align;
self.adc_reg.cr2.modify(|_, w| w.align().bit(align.into()));
}
/// Enables and disables scan mode
pub fn set_scan(&mut self, scan: config::Scan) {
self.config.scan = scan;
self.adc_reg.cr1.modify(|_, w| w.scan().bit(scan.into()));
}
/// Sets which external trigger to use and if it is disabled, rising, falling or both
pub fn set_external_trigger(&mut self, (edge, extsel): (config::TriggerMode, config::ExternalTrigger)) {
self.config.external_trigger = (edge, extsel);
self.adc_reg.cr2.modify(|_, w| unsafe { w
.extsel().bits(extsel.into())
.exten().bits(edge.into())
});
}
/// Enables and disables continuous mode
pub fn set_continuous(&mut self, continuous: config::Continuous) {
self.config.continuous = continuous;
self.adc_reg.cr2.modify(|_, w| w.cont().bit(continuous.into()));
}
/// Sets DMA to disabled, single or continuous
pub fn set_dma(&mut self, dma: config::Dma) {
self.config.dma = dma;
let (dds, en) = match dma {
config::Dma::Disabled => (false, false),
config::Dma::Single => (false, true),
config::Dma::Continuous => (true, true),
};
self.adc_reg.cr2.modify(|_, w| w
//DDS stands for "DMA disable selection"
//0 means do one DMA then stop
//1 means keep sending DMA requests as long as DMA=1
.dds().bit(dds)
.dma().bit(en)
);
}
/// Sets if the end-of-conversion behaviour.
/// The end-of-conversion interrupt occur either per conversion or for the whole sequence.
pub fn set_end_of_conversion_interrupt(&mut self, eoc: config::Eoc) {
self.config.end_of_conversion_interrupt = eoc;
let (en, eocs) = match eoc {
config::Eoc::Disabled => (false, false),
config::Eoc::Conversion => (true, true),
config::Eoc::Sequence => (true, false),
};
self.adc_reg.cr1.modify(|_, w| w.eocie().bit(en));
self.adc_reg.cr2.modify(|_, w| w.eocs().bit(eocs));
}
/// Resets the end-of-conversion flag
pub fn clear_end_of_conversion_flag(&mut self) {
self.adc_reg.sr.modify(|_, w| w.eoc().clear_bit());
}
/// Sets the default sample time that is used for one-shot conversions.
/// [configure_channel](#method.configure_channel) and [start_conversion](#method.start_conversion) can be \
/// used for configurations where different sampling times are required per channel.
pub fn set_default_sample_time(&mut self, sample_time: config::SampleTime) {
self.config.default_sample_time = sample_time;
}
/// Returns the current sequence length. Primarily useful for configuring DMA.
pub fn sequence_length(&mut self) -> u8 {
self.adc_reg.sqr1.read().l().bits() + 1
}
/// Reset the sequence
pub fn reset_sequence(&mut self) {
//The reset state is One conversion selected
self.adc_reg.sqr1.modify(|_, w| w.l().bits(config::Sequence::One.into()));
}
/// Returns the address of the ADC data register. Primarily useful for configuring DMA.
pub fn data_register_address(&mut self) -> u32 {
&self.adc_reg.dr as *const _ as u32
}
/// Configure a channel for sampling.
/// It will make sure the sequence is at least as long as the `sequence` provided.
/// # Arguments
/// * `channel` - channel to configure
/// * `sequence` - where in the sequence to sample the channel. Also called rank in some STM docs/code
/// * `sample_time` - how long to sample for. See datasheet and ref manual to work out how long you need\
/// to sample for at a given ADC clock frequency
pub fn configure_channel<CHANNEL>(&mut self, _channel: &CHANNEL, sequence: config::Sequence, sample_time: config::SampleTime)
where
CHANNEL: Channel<stm32::$adc_type, ID=u8>
{
//Check the sequence is long enough
self.adc_reg.sqr1.modify(|r, w| {
let prev: config::Sequence = r.l().bits().into();
if prev < sequence {
w.l().bits(sequence.into())
} else {
w
}
});
let channel = CHANNEL::channel();
//Set the channel in the right sequence field
match sequence {
config::Sequence::One => self.adc_reg.sqr3.modify(|_, w| unsafe {w.sq1().bits(channel) }),
config::Sequence::Two => self.adc_reg.sqr3.modify(|_, w| unsafe {w.sq2().bits(channel) }),
config::Sequence::Three => self.adc_reg.sqr3.modify(|_, w| unsafe {w.sq3().bits(channel) }),
config::Sequence::Four => self.adc_reg.sqr3.modify(|_, w| unsafe {w.sq4().bits(channel) }),
config::Sequence::Five => self.adc_reg.sqr3.modify(|_, w| unsafe {w.sq5().bits(channel) }),
config::Sequence::Six => self.adc_reg.sqr3.modify(|_, w| unsafe {w.sq6().bits(channel) }),
config::Sequence::Seven => self.adc_reg.sqr2.modify(|_, w| unsafe {w.sq7().bits(channel) }),
config::Sequence::Eight => self.adc_reg.sqr2.modify(|_, w| unsafe {w.sq8().bits(channel) }),
config::Sequence::Nine => self.adc_reg.sqr2.modify(|_, w| unsafe {w.sq9().bits(channel) }),
config::Sequence::Ten => self.adc_reg.sqr2.modify(|_, w| unsafe {w.sq10().bits(channel) }),
config::Sequence::Eleven => self.adc_reg.sqr2.modify(|_, w| unsafe {w.sq11().bits(channel) }),
config::Sequence::Twelve => self.adc_reg.sqr2.modify(|_, w| unsafe {w.sq12().bits(channel) }),
config::Sequence::Thirteen => self.adc_reg.sqr1.modify(|_, w| unsafe {w.sq13().bits(channel) }),
config::Sequence::Fourteen => self.adc_reg.sqr1.modify(|_, w| unsafe {w.sq14().bits(channel) }),
config::Sequence::Fifteen => self.adc_reg.sqr1.modify(|_, w| unsafe {w.sq15().bits(channel) }),
config::Sequence::Sixteen => self.adc_reg.sqr1.modify(|_, w| unsafe {w.sq16().bits(channel) }),
}
fn replace_bits(mut v: u32, offset: u32, width: u32, value: u32) -> u32 {
let mask = !(((1 << width) -1) << (offset * width));
v &= mask;
v |= value << (offset * width);
v
}
//Set the sample time for the channel
let st = u8::from(sample_time);
let st = u32::from(st);
let ch = u32::from(channel);
match channel {
0..=9 => self.adc_reg.smpr2.modify(|r, w| unsafe { w.bits(replace_bits(r.bits(), ch, 3, st)) }),
10..=18 => self.adc_reg.smpr1.modify(|r, w| unsafe { w.bits(replace_bits(r.bits(), ch-10, 3, st)) }),
_ => unimplemented!(),
}
}
/// Returns the current sample stored in the ADC data register
pub fn current_sample(&self) -> u16 {
self.adc_reg.dr.read().data().bits()
}
/// Converts a sample value to millivolts using calibrated VDDA and configured resolution
pub fn sample_to_millivolts(&self, sample: u16) -> u16 {
((u32::from(sample) * self.calibrated_vdda) / self.max_sample) as u16
}
/// Block until the conversion is completed
/// # Panics
/// Will panic if there is no conversion started and the end-of-conversion bit is not set
pub fn wait_for_conversion_sequence(&self) {
if !self.adc_reg.sr.read().strt().bit_is_set() && !self.adc_reg.sr.read().eoc().bit_is_set() {
panic!("Waiting for end-of-conversion but no conversion started");
}
while !self.adc_reg.sr.read().eoc().bit_is_set() {}
//Clear the conversion started flag
self.adc_reg.sr.modify(|_, w| w.strt().clear_bit());
}
/// Synchronously convert a single sample
/// Note that it reconfigures the adc sequence and doesn't restore it
pub fn convert<PIN>(&mut self, pin: &PIN, sample_time: config::SampleTime) -> u16
where
PIN: Channel<stm32::$adc_type, ID=u8>
{
self.adc_reg.cr2.modify(|_, w| w
.dma().clear_bit() //Disable dma
.cont().clear_bit() //Disable continuous mode
.exten().bits(config::TriggerMode::Disabled.into()) //Disable trigger
.eocs().clear_bit() //EOC is set at the end of the sequence
);
self.adc_reg.cr1.modify(|_, w| w
.scan().clear_bit() //Disable scan mode
.eocie().clear_bit() //Disable end of conversion interrupt
);
self.reset_sequence();
self.configure_channel(pin, config::Sequence::One, sample_time);
self.enable();
self.clear_end_of_conversion_flag();
self.start_conversion();
//Wait for the sequence to complete
self.wait_for_conversion_sequence();
let result = self.current_sample();
//Reset the config
self.apply_config(self.config);
result
}
}
impl<PIN> OneShot<stm32::$adc_type, u16, PIN> for Adc<stm32::$adc_type>
where
PIN: Channel<stm32::$adc_type, ID=u8>,
{
type Error = ();
fn read(&mut self, pin: &mut PIN) -> nb::Result<u16, Self::Error> {
let enabled = self.is_enabled();
if !enabled {
self.enable();
}
let sample = self.convert(pin, self.config.default_sample_time);
if !enabled {
self.disable();
}
Ok(sample)
}
}
)+
};
}
#[cfg(any(
feature = "stm32f401",
feature = "stm32f405",