-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets.py
59 lines (56 loc) · 2.86 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from torchvision import datasets, transforms
from torchvision.datasets import CIFAR10, CIFAR100, ImageFolder
from torchtoolbox.transform import Cutout
import os
def build_dataset(args):
transform = []
num_classes = 0
if args.dataset == 'CIFAR-10':
transform.append(transforms.RandomCrop(32, padding=4))
transform.append(Cutout())
transform.append(transforms.RandomHorizontalFlip())
transform.append(transforms.ToTensor())
transform.append(transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)))
transform_train = transforms.Compose(transform)
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
(0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
print(args.data_path)
train_dataset = CIFAR10(root=args.data_path, train=True, download=True, transform=transform_train)
val_dataset = CIFAR10(root=args.data_path, train=False, download=True, transform=transform_test)
num_classes = 10
elif args.dataset == 'CIFAR-100':
transform.append(transforms.RandomCrop(32, padding=4))
transform.append(Cutout())
transform.append(transforms.RandomHorizontalFlip())
transform.append(transforms.ToTensor())
transform.append(transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)))
transform_train = transforms.Compose(transform)
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
(0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761))
])
train_dataset = CIFAR100(root=args.data_path, train=True, download=True, transform=transform_train)
val_dataset = CIFAR100(root=args.data_path, train=False, download=True, transform=transform_test)
num_classes = 100
elif args.dataset == 'IMAGENET':
transform.append(transforms.RandomResizedCrop(224))
transform.append(transforms.RandomHorizontalFlip())
transform.append(transforms.ToTensor())
transform.append(transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]))
transform_train = transforms.Compose(transform)
transform_test = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
train_dataset = ImageFolder(root=os.path.join(args.data_path, 'train'), transform=transform_train)
val_dataset = ImageFolder(root=os.path.join(args.data_path, 'val'), transform=transform_test)
num_classes = 1000
else:
raise NotImplementedError
return train_dataset, val_dataset, num_classes