-
Notifications
You must be signed in to change notification settings - Fork 240
/
pick_and_lift.py
58 lines (47 loc) · 2.25 KB
/
pick_and_lift.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from typing import List
import numpy as np
from pyrep.objects.shape import Shape
from pyrep.objects.proximity_sensor import ProximitySensor
from rlbench.backend.task import Task
from rlbench.backend.conditions import DetectedCondition, ConditionSet, \
GraspedCondition
from rlbench.backend.spawn_boundary import SpawnBoundary
from rlbench.const import colors
class PickAndLift(Task):
def init_task(self) -> None:
self.target_block = Shape('pick_and_lift_target')
self.distractors = [
Shape('stack_blocks_distractor%d' % i)
for i in range(2)]
self.register_graspable_objects([self.target_block])
self.boundary = SpawnBoundary([Shape('pick_and_lift_boundary')])
self.success_detector = ProximitySensor('pick_and_lift_success')
cond_set = ConditionSet([
GraspedCondition(self.robot.gripper, self.target_block),
DetectedCondition(self.target_block, self.success_detector)
])
self.register_success_conditions([cond_set])
def init_episode(self, index: int) -> List[str]:
block_color_name, block_rgb = colors[index]
self.target_block.set_color(block_rgb)
color_choices = np.random.choice(
list(range(index)) + list(range(index + 1, len(colors))),
size=2, replace=False)
for i, ob in enumerate(self.distractors):
name, rgb = colors[color_choices[int(i)]]
ob.set_color(rgb)
self.boundary.clear()
self.boundary.sample(
self.success_detector, min_rotation=(0.0, 0.0, 0.0),
max_rotation=(0.0, 0.0, 0.0))
for block in [self.target_block] + self.distractors:
self.boundary.sample(block, min_distance=0.1)
return ['pick up the %s block and lift it up to the target' %
block_color_name,
'grasp the %s block to the target' % block_color_name,
'lift the %s block up to the target' % block_color_name]
def variation_count(self) -> int:
return len(colors)
def get_low_dim_state(self) -> np.ndarray:
# One of the few tasks that have a custom low_dim_state function.
return np.concatenate([self.target_block.get_position(), self.success_detector.get_position()], 0)