-
Notifications
You must be signed in to change notification settings - Fork 240
/
single_task_rl_with_demos.py
57 lines (43 loc) · 1.51 KB
/
single_task_rl_with_demos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import numpy as np
from rlbench.action_modes.action_mode import MoveArmThenGripper
from rlbench.action_modes.arm_action_modes import JointVelocity
from rlbench.action_modes.gripper_action_modes import Discrete
from rlbench.environment import Environment
from rlbench.observation_config import ObservationConfig
from rlbench.tasks import ReachTarget
class Agent(object):
def __init__(self, action_shape):
self.action_shape = action_shape
def ingest(self, demos):
pass
def act(self, obs):
arm = np.random.normal(0.0, 0.1, size=(self.action_shape[0] - 1,))
gripper = [1.0] # Always open
return np.concatenate([arm, gripper], axis=-1)
# To use 'saved' demos, set the path below, and set live_demos=False
live_demos = True
DATASET = '' if live_demos else 'PATH/TO/YOUR/DATASET'
obs_config = ObservationConfig()
obs_config.set_all(True)
action_mode = MoveArmThenGripper(
arm_action_mode=JointVelocity(), gripper_action_mode=Discrete())
env = Environment(
action_mode, DATASET, obs_config, False)
env.launch()
task = env.get_task(ReachTarget)
demos = task.get_demos(2, live_demos=live_demos)
agent = Agent(env.action_shape)
agent.ingest(demos)
training_steps = 120
episode_length = 40
obs = None
for i in range(training_steps):
if i % episode_length == 0:
print('Reset Episode')
descriptions, obs = task.reset()
print(descriptions)
action = agent.act(obs)
print(action)
obs, reward, terminate = task.step(action)
print('Done')
env.shutdown()