-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathexplanatory-supervision.bib
1341 lines (1162 loc) · 49.5 KB
/
explanatory-supervision.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% ============================================================================
% Passive Learning
% ============================================================================
@inproceedings{lei2016rationalizing,
title={Rationalizing Neural Predictions},
author={Lei, Tao and Barzilay, Regina and Jaakkola, Tommi},
booktitle={Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing},
pages={107--117},
year={2016}
}
@inproceedings{ross2017right,
title={Right for the right reasons: training differentiable models by constraining their explanations},
author={Ross, Andrew Slavin and Hughes, Michael C and Doshi-Velez, Finale},
booktitle={Proceedings of the 26th International Joint Conference on Artificial Intelligence},
pages={2662--2670},
year={2017}
}
@article{camburu2018snli,
title={e-snli: Natural language inference with natural language explanations},
author={Camburu, Oana-Maria and Rockt{\"a}schel, Tim and Lukasiewicz, Thomas and Blunsom, Phil},
journal={Advances in Neural Information Processing Systems},
volume={31},
year={2018}
}
@inproceedings{wang2018learning,
title={Learning credible models},
author={Wang, Jiaxuan and Oh, Jeeheh and Wang, Haozhu and Wiens, Jenna},
booktitle={Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining},
pages={2417--2426},
year={2018}
}
@inproceedings{li2018tell,
title={Tell me where to look: Guided attention inference network},
author={Li, Kunpeng and Wu, Ziyan and Peng, Kuan-Chuan and Ernst, Jan and Fu, Yun},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={9215--9223},
year={2018}
}
@inproceedings{shetty2019not,
title={Not Using the Car to See the Sidewalk--Quantifying and Controlling the Effects of Context in Classification and Segmentation},
author={Shetty, Rakshith and Schiele, Bernt and Fritz, Mario},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={8218--8226},
year={2019}
}
@inproceedings{selvaraju2019taking,
title={{Taking a HINT: Leveraging Explanations to Make Vision and Language Models More Grounded}},
author={Selvaraju, Ramprasaath R and Lee, Stefan and Shen, Yilin and Jin, Hongxia and Ghosh, Shalini and Heck, Larry and Batra, Dhruv and Parikh, Devi},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={2591--2600},
year={2019}
}
@inproceedings{du2019learning,
title={Learning credible deep neural networks with rationale regularization},
author={Du, Mengnan and Liu, Ninghao and Yang, Fan and Hu, Xia},
booktitle={2019 IEEE International Conference on Data Mining (ICDM)},
pages={150--159},
year={2019},
organization={IEEE}
}
@inproceedings{bao2018deriving,
title={Deriving Machine Attention from Human Rationales},
author={Bao, Yujia and Chang, Shiyu and Yu, Mo and Barzilay, Regina},
booktitle={Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing},
pages={1903--1913},
year={2018}
}
@inproceedings{hind2019ted,
title={TED: Teaching AI to explain its decisions},
author={Hind, Michael and Wei, Dennis and Campbell, Murray and Codella, Noel CF and Dhurandhar, Amit and Mojsilovi{\'c}, Aleksandra and Natesan Ramamurthy, Karthikeyan and Varshney, Kush R},
booktitle={Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society},
pages={123--129},
year={2019}
}
@inproceedings{liu2019incorporating,
title={Incorporating Priors with Feature Attribution on Text Classification},
author={Liu, Frederick and Avci, Besim},
booktitle={Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics},
pages={6274--6283},
year={2019}
}
@inproceedings{ghaeini2019saliency,
title={Saliency Learning: Teaching the Model Where to Pay Attention},
author={Ghaeini, Reza and Fern, Xiaoli and Shahbazi, Hamed and Tadepalli, Prasad},
booktitle={Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies},
pages={4016--4025},
year={2019}
}
@inproceedings{zhuang2019care,
title={{CARE: Class Attention to Regions of Lesion for Classification on Imbalanced Data}},
author={Zhuang, Jiaxin and Cai, Jiabin and Wang, Ruixuan and Zhang, Jianguo and Zheng, Weishi},
booktitle={International Conference on Medical Imaging with Deep Learning},
pages={588--597},
year={2019},
organization={PMLR}
}
@inproceedings{simpson2019gradmask,
title={GradMask: Reduce Overfitting by Regularizing Saliency},
author={Simpson, Becks and Dutil, Francis and Bengio, Yoshua and Cohen, Joseph Paul},
booktitle={International Conference on Medical Imaging with Deep Learning--Extended Abstract Track},
year={2019}
}
@inproceedings{strout2019human,
title={Do Human Rationales Improve Machine Explanations?},
author={Strout, Julia and Zhang, Ye and Mooney, Raymond},
booktitle={Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP},
pages={56--62},
year={2019}
}
@inproceedings{pedapati2020learning,
title={Learning Global Transparent Models Consistent with Local Contrastive Explanations},
author={Pedapati, Tejaswini and Balakrishnan, Avinash and Shanmugam, Karthikeyan and Dhurandhar, Amit},
booktitle={Advances in Neural Information Processing Systems},
volume={33},
year={2020}
}
@inproceedings{ramamurthy2020model,
title={Model Agnostic Multilevel Explanations},
author={Natesan Ramamurthy, Karthikeyan and Vinzamuri, Bhanukiran and Zhang, Yunfeng and Dhurandhar, Amit},
booktitle={Advances in Neural Information Processing Systems},
volume={33},
year={2020}
}
@inproceedings{rieger2020interpretations,
title={Interpretations are useful: penalizing explanations to align neural networks with prior knowledge},
author={Rieger, Laura and Singh, Chandan and Murdoch, William and Yu, Bin},
booktitle={International Conference on Machine Learning},
pages={8116--8126},
year={2020},
organization={PMLR}
}
@inproceedings{ebrahimi2020remembering,
title={Remembering for the Right Reasons: Explanations Reduce Catastrophic Forgetting},
author={Ebrahimi, Sayna and Petryk, Suzanne and Gokul, Akash and Gan, William and Gonzalez, Joseph E and Rohrbach, Marcus and others},
booktitle={International Conference on Learning Representations},
year={2020}
}
@inproceedings{jain2020learning,
title={Learning to Faithfully Rationalize by Construction},
author={Jain, Sarthak and Wiegreffe, Sarah and Pinter, Yuval and Wallace, Byron C},
booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
pages={4459--4473},
year={2020}
}
@article{schneider2020reflective,
title={Reflective-Net: Learning from Explanations},
author={Schneider, Johannes and Vlachos, Michalis},
journal={arXiv preprint arXiv:2011.13986},
year={2020}
}
@article{lage2020learning,
title={Learning Interpretable Concept-Based Models with Human Feedback},
author={Lage, Isaac and Doshi-Velez, Finale},
journal={arXiv preprint arXiv:2012.02898},
year={2020}
}
@article{erion2021improving,
title={Improving performance of deep learning models with axiomatic attribution priors and expected gradients},
author={Erion, Gabriel and Janizek, Joseph D and Sturmfels, Pascal and Lundberg, Scott M and Lee, Su-In},
journal={Nature Machine Intelligence},
pages={1--12},
year={2021},
publisher={Nature Publishing Group}
}
@article{setzu2021glocalx,
title={GLocalX-From Local to Global Explanations of Black Box AI Models},
author={Setzu, Mattia and Guidotti, Riccardo and Monreale, Anna and Turini, Franco and Pedreschi, Dino and Giannotti, Fosca},
journal={Artificial Intelligence},
volume={294},
pages={103457},
year={2021},
publisher={Elsevier}
}
@inproceedings{bahadori2021debiasing,
title={Debiasing Concept-based Explanations with Causal Analysis},
author={Bahadori, Mohammad Taha and Heckerman, David},
booktitle={International Conference on Learning Representations},
year={2021}
}
@inproceedings{raghu2021teaching,
title={Teaching with Commentaries},
author={Raghu, Aniruddh and Raghu, Maithra and Kornblith, Simon and Duvenaud, David and Hinton, Geoffrey},
booktitle={International Conference on Learning Representations},
year={2021}
}
@inproceedings{viviano2021saliency,
title={Saliency is a possible red herring when diagnosing poor generalization},
author={Viviano, Joseph D and Simpson, Becks and Dutil, Francis and Bengio, Yoshua and Cohen, Joseph Paul},
booktitle={International Conference on Learning Representations},
year={2021}
}
@inproceedings{chang2021towards,
title={Towards Robust Classification Model by Counterfactual and Invariant Data Generation},
author={Chang, Chun-Hao and Adam, George Alexandru and Goldenberg, Anna},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={15212--15221},
year={2021}
}
@inproceedings{nanfack2021global,
title={Global explanations with decision rules: a co-learning approach},
author={Nanfack, G{\'e}raldin and Temple, Paul and Fr{\'e}nay, Beno{\^\i}t},
booktitle={Uncertainty in Artificial Intelligence},
pages={589--599},
year={2021},
organization={PMLR}
}
@inproceedings{zhang2021explain,
title={Explain and Predict, and then Predict again},
author={Zhang, Zijian and Rudra, Koustav and Anand, Avishek},
booktitle={Proceedings of the 14th ACM International Conference on Web Search and Data Mining},
pages={418--426},
year={2021}
}
@article{lertvittayakumjorn2021explanation,
title={Explanation-Based Human Debugging of NLP Models: A Survey},
author={Lertvittayakumjorn, Piyawat and Toni, Francesca},
journal={arXiv preprint arXiv:2104.15135},
year={2021}
}
@article{hase2021can,
title={When Can Models Learn From Explanations? A Formal Framework for Understanding the Roles of Explanation Data},
author={Hase, Peter and Bansal, Mohit},
journal={arXiv preprint arXiv:2102.02201},
year={2020}
}
@article{barnett2021case,
title={A case-based interpretable deep learning model for classification of mass lesions in digital mammography},
author={Barnett, Alina Jade and Schwartz, Fides Regina and Tao, Chaofan and Chen, Chaofan and Ren, Yinhao and Lo, Joseph Y and Rudin, Cynthia},
journal={Nature Machine Intelligence},
volume={3},
number={12},
pages={1061--1070},
year={2021},
publisher={Nature Publishing Group}
}
@article{chrysostomou2021enjoy,
title={Enjoy the Salience: Towards Better Transformer-based Faithful Explanations with Word Salience},
author={Chrysostomou, George and Aletras, Nikolaos},
journal={arXiv preprint arXiv:2108.13759},
year={2021}
}
@article{han2021influence,
title={Influence Tuning: Demoting Spurious Correlations via Instance Attribution and Instance-Driven Updates},
author={Han, Xiaochuang and Tsvetkov, Yulia},
journal={arXiv preprint arXiv:2110.03212},
year={2021}
}
@article{saha2021saliency,
title={Saliency Guided Experience Packing for Replay in Continual Learning},
author={Saha, Gobinda and Roy, Kaushik},
journal={arXiv preprint arXiv:2109.04954},
year={2021}
}
@article{carton2021learn,
title={What to Learn, and How: Toward Effective Learning from Rationales},
author={Carton, Samuel and Kanoria, Surya and Tan, Chenhao},
journal={arXiv preprint arXiv:2112.00071},
year={2021}
}
@inproceedings{stacey2022supervising,
title={Supervising Model Attention with Human Explanations for Robust Natural Language Inference},
author={Stacey, Joe and Belinkov, Yonatan and Rei, Marek},
booktitle={Proceedings of Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI)},
year={2022}
}
@article{anders2022finding,
title={Finding and removing clever hans: Using explanation methods to debug and improve deep models},
author={Anders, Christopher J and Weber, Leander and Neumann, David and Samek, Wojciech and M{\"u}ller, Klaus-Robert and Lapuschkin, Sebastian},
journal={Information Fusion},
volume={77},
pages={261--295},
year={2022},
publisher={Elsevier}
}
@inproceedings{wang2022toward,
title={Toward learning human-aligned cross-domain robust models by countering misaligned features},
author={Wang, Haohan and Huang, Zeyi and Zhang, Hanlin and Lee, Yong Jae and Xing, Eric P},
booktitle={Uncertainty in Artificial Intelligence},
pages={2075--2084},
year={2022},
organization={PMLR}
}
@article{hartmann2022survey,
title={A survey on improving NLP models with human explanations},
author={Hartmann, Mareike and Sonntag, Daniel},
journal={arXiv preprint arXiv:2204.08892},
year={2022}
}
@article{ying2022visfis,
title={VisFIS: Visual Feature Importance Supervision with Right-for-the-Right-Reason Objectives},
author={Ying, Zhuofan and Hase, Peter and Bansal, Mohit},
journal={arXiv preprint arXiv:2206.11212},
year={2022}
}
@article{hagos2022identifying,
title={Identifying Spurious Correlations and Correcting them with an Explanation-based Learning},
author={Hagos, Misgina Tsighe and Curran, Kathleen M and Mac Namee, Brian},
journal={arXiv preprint arXiv:2211.08285},
year={2022}
}
@inproceedings{rao2023studying,
title={Studying How to Efficiently and Effectively Guide Models with Explanations},
author={Rao, Sukrut and B{\"o}hle, Moritz and Parchami-Araghi, Amin and Schiele, Bernt},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={1922--1933},
year={2023}
}
@article{pukdee2023learning,
title={Learning with Explanation Constraints},
author={Pukdee, Rattana and Sam, Dylan and Kolter, J Zico and Balcan, Maria-Florina and Ravikumar, Pradeep},
journal={arXiv preprint arXiv:2303.14496},
year={2023}
}
@article{eastwood2023spuriosity,
title={Spuriosity Didn't Kill the Classifier: Using Invariant Predictions to Harness Spurious Features},
author={Eastwood, Cian and Singh, Shashank and Nicolicioiu, Andrei Liviu and Vlastelica, Marin and von K{\"u}gelgen, Julius and Sch{\"o}lkopf, Bernhard},
journal={arXiv preprint arXiv:2307.09933},
year={2023}
}
@inproceedings{neuhaus2023spurious,
title={Spurious features everywhere-large-scale detection of harmful spurious features in imagenet},
author={Neuhaus, Yannic and Augustin, Maximilian and Boreiko, Valentyn and Hein, Matthias},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
year={2023}
}
@inproceedings{zhang2024targeted,
title={Targeted Activation Penalties Help CNNs Ignore Spurious Signals},
author={Zhang, Dekai and Williams, Matt and Toni, Francesca},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
year={2024}
}
% ============================================================================
% Interactive Learning
% ============================================================================
@inproceedings{kulesza2015principles,
title={Principles of explanatory debugging to personalize interactive machine learning},
author={Kulesza, Todd and Burnett, Margaret and Wong, Weng-Keen and Stumpf, Simone},
booktitle={Proceedings of the 20th international conference on intelligent user interfaces},
pages={126--137},
year={2015}
}
@inproceedings{teso2019explanatory,
title={Explanatory interactive machine learning},
author={Teso, Stefano and Kersting, Kristian},
booktitle={Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society},
pages={239--245},
year={2019}
}
@inproceedings{teso2019toward,
title={Toward Faithful Explanatory Active Learning with Self-explainable Neural Nets},
author={Teso, Stefano},
booktitle={Proceedings of the Workshop on Interactive Adaptive Learning (IAL 2019)},
pages={4--16},
year={2019}
}
@article{schramowski2020making,
title={Making deep neural networks right for the right scientific reasons by interacting with their explanations},
author={Schramowski, Patrick and Stammer, Wolfgang and Teso, Stefano and Brugger, Anna and Herbert, Franziska and Shao, Xiaoting and Luigs, Hans-Georg and Mahlein, Anne-Katrin and Kersting, Kristian},
journal={Nature Machine Intelligence},
volume={2},
number={8},
pages={476--486},
year={2020},
publisher={Nature Publishing Group}
}
@inproceedings{heo2020cost,
title={Cost-effective Interactive Attention Learning with Neural Attention Processes},
author={Heo, Jay and Park, Junhyeon and Jeong, Hyewon and Kim, Kwang Joon and Lee, Juho and Yang, Eunho and Hwang, Sung Ju},
booktitle={International Conference on Machine Learning},
pages={4228--4238},
year={2020},
organization={PMLR}
}
@inproceedings{honeycutt2020soliciting,
title={Soliciting human-in-the-loop user feedback for interactive machine learning reduces user trust and impressions of model accuracy},
author={Honeycutt, Donald and Nourani, Mahsan and Ragan, Eric},
booktitle={Proceedings of the AAAI Conference on Human Computation and Crowdsourcing},
volume={8},
number={1},
pages={63--72},
year={2020}
}
@article{mitsuhara2019embedding,
title={Embedding Human Knowledge into Deep Neural Network via Attention Map},
author={Mitsuhara, Masahiro and Fukui, Hiroshi and Sakashita, Yusuke and Ogata, Takanori and Hirakawa, Tsubasa and Yamashita, Takayoshi and Fujiyoshi, Hironobu},
journal={arXiv preprint arXiv:1905.03540},
year={2019}
}
@article{sokol2020one,
title={One explanation does not fit all},
author={Sokol, Kacper and Flach, Peter},
journal={KI-K{\"u}nstliche Intelligenz},
pages={1--16},
year={2020},
publisher={Springer}
}
@inproceedings{lertvittayakumjorn2020find,
title={FIND: human-in-the-loop debugging deep text classifiers},
author={Lertvittayakumjorn, Piyawat and Specia, Lucia and Toni, Francesca},
booktitle={Conference on Empirical Methods in Natural Language Processing},
pages={332--348},
year={2020}
}
@inproceedings{ciravegna2020human,
title={Human-driven FOL explanations of deep learning},
author={Ciravegna, Gabriele and Giannini, Francesco and Gori, Marco and Maggini, Marco and Melacci, Stefano},
booktitle={Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence},
pages={2234--2240},
year={2020},
organization={International Joint Conferences on Artificial Intelligence Organization}
}
@inproceedings{liang2020alice,
title={{ALICE: Active Learning with Contrastive Natural Language Explanations}},
author={Liang, Weixin and Zou, James and Yu, Zhou},
booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
pages={4380--4391},
year={2020}
}
@article{popordanoska2020machine,
title={{Machine Guides, Human Supervises: Interactive Learning with Global Explanations}},
author={Popordanoska, Teodora and Kumar, Mohit and Teso, Stefano},
journal={arXiv preprint arXiv:2009.09723},
year={2020}
}
@article{wang2021teaching,
title={Teaching an Active Learner with Contrastive Examples},
author={Wang, Chaoqi and Singla, Adish and Chen, Yuxin},
journal={Advances in Neural Information Processing Systems},
volume={34},
pages={17968--17980},
year={2021}
}
@inproceedings{stammer2021right,
title={{Right for the Right Concept: Revising Neuro-Symbolic Concepts by Interacting with their Explanations}},
author={Stammer, Wolfgang and Schramowski, Patrick and Kersting, Kristian},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={3619--3629},
year={2021}
}
@inproceedings{shao2021right,
title={{Right for Better Reasons: Training Differentiable Models by Constraining their Influence Function}},
author={Shao, Xiaoting and Skryagin, Arseny and Schramowski, P and Stammer, W and Kersting, Kristian},
booktitle={Proceedings of Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI)},
year={2021}
}
@inproceedings{daly2021user,
title={{User Driven Model Adjustment via Boolean Rule Explanations}},
author={Daly, Elizabeth M and Mattetti, Massimiliano and Alkan, {\"O}znur and Nair, Rahul},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={35},
number={7},
pages={5896--5904},
year={2021}
}
@article{ghai2021explainable,
title={{Explainable Active Learning (XAL): Toward AI Explanations as Interfaces for Machine Teachers}},
author={Ghai, Bhavya and Liao, Q Vera and Zhang, Yunfeng and Bellamy, Rachel and Mueller, Klaus},
journal={Proceedings of the ACM on Human-Computer Interaction},
volume={4},
number={CSCW3},
pages={1--28},
year={2021},
publisher={ACM New York, NY, USA}
}
@article{behrens2021bandits,
title={Bandits for Learning to Explain from Explanations},
author={Behrens, Freya and Teso, Stefano and Mottin, Davide},
journal={arXiv preprint arXiv:2102.03815},
year={2021}
}
@article{zylberajch2021hildif,
title={{HILDIF: Interactive Debugging of NLI Models Using Influence Functions}},
author={Zylberajch, Hugo and Lertvittayakumjorn, Piyawat and Toni, Francesca},
journal={Workshop on Interactive Learning for Natural Language Processing},
pages={1},
year={2021}
}
@article{yao2021refining,
title={{Refining Neural Networks with Compositional Explanations}},
author={Yao, Huihan and Chen, Ying and Ye, Qinyuan and Jin, Xisen and Ren, Xiang},
journal={arXiv preprint arXiv:2103.10415},
year={2021}
}
@inproceedings{teso2021interactive,
title={{Interactive Label Cleaning with Example-based Explanations}},
author={Teso, Stefano and Bontempelli, Andrea and Giunchiglia, Fausto and Passerini, Andrea},
booktitle={Proceedings of the 35th International Conference on Neural Information Processing Systems},
year={2021}
}
@inproceedings{kambhampati2021symbols,
title={{Symbols as a Lingua Franca for Bridging Human-AI Chasm for Explainable and Advisable AI Systems}},
author={Kambhampati, Subbarao and Sreedharan, Sarath and Verma, Mudit and Zha, Yantian and Guan, Lin},
booktitle={Proceedings of Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI)},
year={2022}
}
@inproceedings{bontempelli2021toward,
title={{Toward a Unified Framework for Debugging Gray-box Models}},
author={Bontempelli, Andrea and Giunchiglia, Fausto and Passerini, Andrea and Teso, Stefano},
booktitle={The AAAI-22 Workshop on Interactive Machine Learning},
year={2021}
}
@inproceedings{margatina2021active,
title={Active Learning by Acquiring Contrastive Examples},
author={Margatina, Katerina and Vernikos, Giorgos and Barrault, Lo{\"\i}c and Aletras, Nikolaos},
booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing},
pages={650--663},
year={2021}
}
@article{plumb2021finding,
title={{Finding and Fixing Spurious Patterns with Explanations}},
author={Plumb, Gregory and Ribeiro, Marco Tulio and Talwalkar, Ameet},
journal={arXiv preprint arXiv:2106.02112},
year={2021}
}
@article{schramowski2021interactively,
title={{Interactively Generating Explanations for Transformer Language Models}},
author={Schramowski, Patrick and Friedrich, Felix and Tauchmann, Christopher and Kersting, Kristian},
journal={arXiv preprint arXiv:2110.02058},
year={2021}
}
@article{hartmanninteraction,
title={{Interaction with Explanations in the XAINES Project}},
author={Hartmann, Mareike and Kruijff-Korbayov{\'a}, Ivana and Sonntag, Daniel},
year={2021}
}
@inproceedings{lu2022rationale,
title={A Rationale-Centric Framework for Human-in-the-loop Machine Learning},
author={Lu, Jinghui and Yang, Linyi and Namee, Brian and Zhang, Yue},
booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
pages={6986--6996},
year={2022}
}
@article{friedrich2022typology,
title={A Typology to Explore and Guide Explanatory Interactive Machine Learning},
author={Friedrich, Felix and Stammer, Wolfgang and Schramowski, Patrick and Kersting, Kristian},
journal={arXiv preprint arXiv:2203.03668},
year={2022}
}
@inproceedings{slany2022caipi,
title={CAIPI in Practice: Towards Explainable Interactive Medical Image Classification},
author={Slany, Emanuel and Ott, Yannik and Scheele, Stephan and Paulus, Jan and Schmid, Ute},
booktitle={IFIP International Conference on Artificial Intelligence Applications and Innovations},
pages={389--400},
year={2022},
organization={Springer}
}
@article{kiefer2022semantic,
title={Semantic Interactive Learning for Text Classification: A Constructive Approach for Contextual Interactions},
author={Kiefer, Sebastian and Hoffmann, Mareike and Schmid, Ute},
journal={Machine Learning and Knowledge Extraction},
volume={4},
number={4},
pages={994--1010},
year={2022},
publisher={MDPI}
}
@inproceedings{hagos2022impact,
title={Impact of Feedback Type on Explanatory Interactive Learning},
author={Hagos, Misgina Tsighe and Curran, Kathleen M and Mac Namee, Brian},
booktitle={International Symposium on Methodologies for Intelligent Systems},
pages={127--137},
year={2022},
organization={Springer}
}
@article{teso2023leveraging,
title={Leveraging Explanations in Interactive Machine Learning: An Overview},
author={Teso, Stefano and Alkan, {\"O}znur and Stammer, Wolfang and Daly, Elizabeth},
journal={Frontiers in Artificial Intelligence},
year={2023}
}
@inproceedings{bontempelli2023concept,
title={Concept-level debugging of part-prototype networks},
author={Bontempelli, Andrea and Teso, Stefano and Giunchiglia, Fausto and Passerini, Andrea},
booktitle={International Conference on Learning Representations},
year={2023}
}
@article{steinmann2023learning,
title={Learning to Intervene on Concept Bottlenecks},
author={Steinmann, David and Stammer, Wolfgang and Friedrich, Felix and Kersting, Kristian},
journal={arXiv preprint arXiv:2308.13453},
year={2023}
}
@article{lalletti2024spurious,
title={Spurious Correlations in Concept Drift: Can Explanatory Interaction Help?},
author={Lalletti, Cristiana and Teso, Stefano},
journal={arXiv preprint arXiv:2407.16515},
year={2024}
}
% ============================================================================
% Reinforcement Learning
% ============================================================================
@inproceedings{guan2020explanation,
title={Explanation augmented feedback in human-in-the-loop reinforcement learning},
author={Guan, Lin and Verma, Mudit and Kambhampati, Subbarao},
booktitle={Human And Machine in-the-Loop Evaluation and Learning Strategies},
year={2020}
}
@inproceedings{tulli2020learning,
title={Learning from explanations and demonstrations: A pilot study},
author={Tulli, Silvia and Wallk{\"o}tter, Sebastian and Paiva, Ana and Melo, Francisco S and Chetouani, Mohamed},
booktitle={2nd Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence},
pages={61--66},
year={2020}
}
@inproceedings{guan2021widening,
title={Widening the Pipeline in Human-Guided Reinforcement Learning with Explanation and Context-Aware Data Augmentation},
author={Guan, Lin and Verma, Mudit and Guo, Sihang and Zhang, Ruohan and Kambhampati, Suabbarao},
booktitle={Proceedings of the 35th International Conference on Neural Information Processing Systems},
year={2021}
}
% ============================================================================
% Model Distillation
% ============================================================================
@inproceedings{milli2019model,
title={Model reconstruction from model explanations},
author={Milli, Smitha and Schmidt, Ludwig and Dragan, Anca D and Hardt, Moritz},
booktitle={Proceedings of the Conference on Fairness, Accountability, and Transparency},
pages={1--9},
year={2019}
}
@article{pruthi2020evaluating,
title={Evaluating Explanations: How much do explanations from the teacher aid students?},
author={Pruthi, Danish and Dhingra, Bhuwan and Soares, Livio Baldini and Collins, Michael and Lipton, Zachary C and Neubig, Graham and Cohen, William W},
journal={arXiv preprint arXiv:2012.00893},
year={2020}
}
% ============================================================================
% Regularization without Supervision
% ============================================================================
@inproceedings{ross2018improving,
title={Improving the adversarial robustness and interpretability of deep neural networks by regularizing their input gradients},
author={Ross, Andrew and Doshi-Velez, Finale},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={32},
number={1},
year={2018}
}
@inproceedings{alvarez2018towards,
title={Towards robust interpretability with self-explaining neural networks},
author={Alvarez-Melis, David and Jaakkola, Tommi S},
booktitle={Proceedings of the 32nd International Conference on Neural Information Processing Systems},
pages={7786--7795},
year={2018}
}
@inproceedings{wu2018beyond,
title={Beyond sparsity: Tree regularization of deep models for interpretability},
author={Wu, Mike and Hughes, Michael and Parbhoo, Sonali and Zazzi, Maurizio and Roth, Volker and Doshi-Velez, Finale},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={32},
number={1},
year={2018}
}
@inproceedings{wu2020regional,
title={Regional tree regularization for interpretability in deep neural networks},
author={Wu, Mike and Parbhoo, Sonali and Hughes, Michael and Kindle, Ryan and Celi, Leo and Zazzi, Maurizio and Roth, Volker and Doshi-Velez, Finale},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={34},
number={04},
pages={6413--6421},
year={2020}
}
@inproceedings{plumb2020regularizing,
title={Regularizing black-box models for improved interpretability},
author={Plumb, Gregory and Al-Shedivat, Maruan and Cabrera, {\'A}ngel Alexander and Perer, Adam and Xing, Eric and Talwalkar, Ameet},
booktitle={Advances in Neural Information Processing Systems},
volume={33},
year={2020}
}
@inproceedings{singh2020don,
title={Don't Judge an Object by Its Context: Learning to Overcome Contextual Bias},
author={Singh, Krishna Kumar and Mahajan, Dhruv and Grauman, Kristen and Lee, Yong Jae and Feiszli, Matt and Ghadiyaram, Deepti},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={11070--11078},
year={2020}
}
@article{halliwell2020trustworthy,
title={Trustworthy convolutional neural networks: A gradient penalized-based approach},
author={Halliwell, Nicholas and Lecue, Freddy},
journal={arXiv preprint arXiv:2009.14260},
year={2020}
}
@inproceedings{pillai2021explainable,
title={Explainable Models with Consistent Interpretations},
author={Pillai, Vipin and Pirsiavash, Hamed},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
year={2021},
}
@inproceedings{han2021explanation,
title={Explanation Consistency Training: Facilitating Consistency-Based Semi-Supervised Learning with Interpretability},
author={Han, Tao and Tu, Wei-Wei and Li, Yu-Feng},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
year={2021},
}
@article{ismail2021improving,
title={Improving Deep Learning Interpretability by Saliency Guided Training},
author={Ismail, Aya Abdelsalam and Corrada Bravo, Hector and Feizi, Soheil},
journal={Advances in Neural Information Processing Systems},
volume={34},
year={2021}
}
@inproceedings{zeng2021generating,
title={Generating Deep Networks Explanations with Robust Attribution Alignment},
author={Zeng, Guohang and Kowsar, Yousef and Erfani, Sarah and Bailey, James},
booktitle={Asian Conference on Machine Learning},
pages={753--768},
year={2021},
organization={PMLR}
}
@article{stammer2023learning,
title={Learning by Self-Explaining},
author={Stammer, Wolfgang and Friedrich, Felix and Steinmann, David and Shindo, Hikaru and Kersting, Kristian},
journal={arXiv preprint arXiv:2309.08395},
year={2023},
}
% ============================================================================
% Machine Teaching
% ============================================================================
@inproceedings{su2017interpretable,
title={Interpretable Machine Teaching via Feature Feedback},
author={Su, Shihan and Chen, Yuxin and Mac Aodha, Oisin and Perona, Pietro and Yue, Yisong},
booktitle={NIPS'17 Workshop on Teaching Machines, Robots, and Humans},
year={2017}
}
@inproceedings{mac2018teaching,
title={Teaching categories to human learners with visual explanations},
author={Mac Aodha, Oisin and Su, Shihan and Chen, Yuxin and Perona, Pietro and Yue, Yisong},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={3820--3828},
year={2018}
}
% ============================================================================
% Applications
% ============================================================================
@article{sefcik2021improving,
title={Improving a neural network model by explanation-guided training for glioma classification based on MRI data},
author={Sefcik, Frantisek and Benesova, Wanda},
journal={arXiv preprint arXiv:2107.02008},
year={2021}
}
% ============================================================================
% Related Works
% ============================================================================
% Explanation-based Learning
@article{mitchell1986explanation,
title={Explanation-based generalization: A unifying view},
author={Mitchell, Tom M and Keller, Richard M and Kedar-Cabelli, Smadar T},
journal={Machine learning},
volume={1},
number={1},
pages={47--80},
year={1986},
publisher={Springer}
}
@article{dejong1986explanation,
title={Explanation-based learning: An alternative view},
author={DeJong, Gerald and Mooney, Raymond},
journal={Machine learning},
volume={1},
number={2},
pages={145--176},
year={1986},
publisher={Springer}
}
@article{ellman1989explanation,
title={Explanation-based learning: A survey of programs and perspectives},
author={Ellman, Thomas},
journal={ACM Computing Surveys (CSUR)},
volume={21},
number={2},
pages={163--221},
year={1989},
publisher={ACM New York, NY, USA}
}
@inproceedings{kimmig2007probabilistic,
title={Probabilistic explanation based learning},
author={Kimmig, Angelika and De Raedt, Luc and Toivonen, Hannu},
booktitle={European Conference on Machine Learning},
pages={176--187},
year={2007},
organization={Springer}
}
% Injecting invariances / feature constraints into models
@inproceedings{simard1991tangent,
title={Tangent prop-a formalism for specifying selected invariances in an adaptive network},
author={Simard, Patrice and Victorri, Bernard and LeCun, Yann and Denker, John S},
booktitle={NIPS},
volume={91},
pages={895--903},
year={1991}
}
@article{decoste2002training,
title={Training invariant support vector machines},
author={DeCoste, Dennis and Sch{\"o}lkopf, Bernhard},
journal={Machine learning},
volume={46},
number={1},
pages={161--190},
year={2002},
publisher={Springer}
}
@inproceedings{small2011constrained,
title={The constrained weight space svm: learning with ranked features},
author={Small, Kevin and Wallace, Byron C and Brodley, Carla E and Trikalinos, Thomas A},
booktitle={Proceedings of the 28th International Conference on International Conference on Machine Learning},
pages={865--872},
year={2011}
}
% Dual label-feature feedback
@article{raghavan2006active,
title={Active learning with feedback on features and instances},
author={Raghavan, Hema and Madani, Omid and Jones, Rosie},
journal={The Journal of Machine Learning Research},
volume={7},
pages={1655--1686},
year={2006},
publisher={JMLR. org}
}
@inproceedings{raghavan2007interactive,
title={An interactive algorithm for asking and incorporating feature feedback into support vector machines},
author={Raghavan, Hema and Allan, James},
booktitle={Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval},
pages={79--86},
year={2007}
}
@inproceedings{druck2008learning,
title={Learning from labeled features using generalized expectation criteria},
author={Druck, Gregory and Mann, Gideon and McCallum, Andrew},
booktitle={Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval},
pages={595--602},
year={2008}
}
@inproceedings{druck2009active,
title={Active learning by labeling features},
author={Druck, Gregory and Settles, Burr and McCallum, Andrew},
booktitle={Proceedings of the 2009 conference on Empirical methods in natural language processing},
pages={81--90},
year={2009}
}
@inproceedings{attenberg2010unified,
title={A unified approach to active dual supervision for labeling features and examples},
author={Attenberg, Josh and Melville, Prem and Provost, Foster},
booktitle={Joint European Conference on Machine Learning and Knowledge Discovery in Databases},
pages={40--55},
year={2010},
organization={Springer}
}
@inproceedings{settles2011closing,
title={Closing the loop: Fast, interactive semi-supervised annotation with queries on features and instances},
author={Settles, Burr},
booktitle={Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing},
pages={1467--1478},
year={2011}
}
@inproceedings{dasgupta2018learning,
title={Learning from discriminative feature feedback},
author={Dasgupta, Sanjoy and Dey, Akansha and Roberts, Nicholas and Sabato, Sivan},
booktitle={Proceedings of the 32nd International Conference on Neural Information Processing Systems},
pages={3959--3967},
year={2018}
}
@inproceedings{dasgupta2020robust,
title={Robust Learning from Discriminative Feature Feedback},
author={Dasgupta, Sanjoy and Sabato, Sivan},
booktitle={International Conference on Artificial Intelligence and Statistics},