-
Notifications
You must be signed in to change notification settings - Fork 127
Interpreter optimization resources
This is a collection of links for interpreter optimizations. Target audience is Nimbus developers.
Description | Link |
---|---|
Basic overview of computed gotos | https://eli.thegreenplace.net/2012/07/12/computed-goto-for-efficient-dispatch-tables |
Optimizing direct threaded code by selective inlining (Paper from 1998 which includes JIT introduction with code!) | http://flint.cs.yale.edu/jvmsem/doc/threaded.ps |
Design of a bytecode interpreter, including Stack vs Register, how to represent values (single type, tagged unions, untagged union, interface/virtual function) | http://gameprogrammingpatterns.com/bytecode.html |
Writing a fast interpreter: control-flow graph optimization from LuaJIT author | http://lua-users.org/lists/lua-l/2011-02/msg00742.html |
In-depth dive on how to write an emulator | http://fms.komkon.org/EMUL8/HOWTO.html |
Review of interpreter dispatch strategies to limit branch mispredictions: direct threaded code vs indirect threaded code vs token threaded code vs switch based dispatching vs replicated switch dispatching + Bibliography | http://realityforge.org/code/virtual-machines/2011/05/19/interpreters.html |
Fast VMs without assembly - speeding up the interpreter loop: threaded interpreter, duff's device, JIT, Nostradamus distributor | http://www.emulators.com/docs/nx25_nostradamus.htm |
Switch case vs Table vs Function caching/dynarec | http://ngemu.com/threads/switch-case-vs-function-table.137562/ |
Jump tables vs Switch | http://www.cipht.net/2017/10/03/are-jump-tables-always-fastest.html |
Paper: branch prediction and the performance of Interpreters - Don't trust the folklore | https://hal.inria.fr/hal-01100647/document |
Paper by author of ANTLR: The Structure and Performance of Efficient Interpreters | https://www.jilp.org/vol5/v5paper12.pdf |
Paper by author of ANTLR introducing dynamic replication: Optimizing Indirect Branch Prediction Accuracy in Virtual Machine Interpreter | https://www.scss.tcd.ie/David.Gregg/papers/toplas05.pdf |
Benchmarking VM Dispatch strategies in Rust: Switch vs unrolled switch vs tail call dispatch vs Computed Gotos | https://pliniker.github.io/post/dispatchers/ |
Computed Gotos for fast dispatching in Python | https://github.com/python/cpython/blob/9d6171ded5c56679bc295bacffc718472bcb706b/Python/ceval.c#L571-L608 |
Description | Link |
---|---|
Optimizing direct threaded code by selective inlining | http://flint.cs.yale.edu/jvmsem/doc/threaded.ps |
Dynamic recompilation introduction | http://ngemu.com/threads/dynamic-recompilation-an-introduction.20491/ |
Dynamic recompilation guide with Chip8 | https://github.com/marco9999/Dynarec_Guide/blob/master/Introduction%20to%20Dynamic%20Recompilation%20in%20Emulation.pdf |
Dynamic recompilation - accompanying source code | https://github.com/marco9999/Super8_jitcore/ |
Presentation: Interpretation (basic indirect and direct threaded) vs binary translation | http://www.ittc.ku.edu/~kulkarni/teaching/EECS768/slides/chapter2.pdf |
Threaded interpretation vs Dynarec | http://www.emutalk.net/threads/55275-Threaded-interpretation-vs-Dynamic-Binary-Translation |
Dynamic recompilation wiki | http://emulation.gametechwiki.com/index.php/Dynamic_recompilation |
Context threading is a promising alternative to Direct/Indirect/Call/Token/Subroutine/Switch threading that makes interpretation nice with the hardware branch predictor. Practical implementation wanted:
Basically, instead of computed goto, you have computed "call" and each section called is ended by the ret (return) instruction. Note that it the address called is still inline, there is no parameter pushed on the stack.
The trick is that CPU has the following types of predictors:
- Linear or straight-line code
- Conditional branches
- Calls and Returns
- Indirect branches
But direct threaded code / computed goto only makes use of indirect branches (goto). Context Threading seems to reduce cache misses by up to 95% by exploiting all those predictors. However it requires assembly as there is no way to generate arbitrary call and ret instructions.
-
Bochs x86 emulator
- Virtualization without Execution: Designing a portable VM - Powerpoint
- Virtualization without Execution - Paper
- Author is also the author of the Nostradamus Distributor linked in pure itnerpreter optimizations
- MorphoVM
import random, sequtils, times
type
Op = enum
Halt # = 0x0000
Inc # = 0x0100
Dec # = 0x0110
Mul2 # = 0x0230
Div2 # = 0x0240
Add7 # = 0x0307
Neg # = 0x0400
func interp_switch(code: seq[Op], initVal: int): int =
var
pc = 0
result = initVal
while true:
case code[pc]:
of Halt:
return
of Inc:
inc pc
inc result
of Dec:
inc pc
dec result
of Mul2:
inc pc
result *= 2
of Div2:
inc pc
result = result div 2
of Add7:
inc pc
inc result, 7
of Neg:
inc pc
result = -result
#################################################################################################################
func interp_cgoto(code: seq[Op], initVal: int): int =
# Requires a dense enum
var
pc = 0
result = initVal
while true:
{.computedGoto.}
let instr = code[pc]
case instr:
of Halt:
return
of Inc:
inc pc
inc result
of Dec:
inc pc
dec result
of Mul2:
inc pc
result *= 2
of Div2:
inc pc
result = result div 2
of Add7:
inc pc
inc result, 7
of Neg:
inc pc
result = -result
#################################################################################################################
func halt(result: var int, stop: var bool) {.inline, nimcall.}=
stop = true
func inc(result: var int, stop: var bool) {.inline, nimcall.}=
inc result
func dec(result: var int, stop: var bool) {.inline, nimcall.}=
dec result
func mul2(result: var int, stop: var bool) {.inline, nimcall.}=
result *= 2
func div2(result: var int, stop: var bool) {.inline, nimcall.}=
result = result div 2
func add7(result: var int, stop: var bool) {.inline, nimcall.}=
inc result, 7
func neg(result: var int, stop: var bool) {.inline, nimcall.}=
result = -result
# Requires dense enum
type InstrF = proc (result: var int, stop: var bool){.inline, nimcall, noSideEffect, gcsafe, locks: 0.}
type FuncTable = array[Op, InstrF]
const funcTable: FuncTable = [
Halt: halt,
Inc: inc,
Dec: dec,
Mul2: mul2,
Div2: div2,
Add7: add7,
Neg: neg
]
proc interp_ftable(code: seq[Op], initVal: int): int =
# Requires dense enum
var
pc = 0
stop = false
result = initVal
while not stop:
funcTable[code[pc]](result, stop)
inc pc
#################################################################################################################
type
InstrNext = proc (val: var int, code: seq[Op], pc: var int, stop: var bool): OpH {.inline, nimcall.}
OpH = ref object
handler: InstrNext
FuncTableNext = array[Op, OpH]
proc halt(val: var int, code: seq[Op], pc: var int, stop: var bool): OpH {.inline, nimcall.}
proc inc(val: var int, code: seq[Op], pc: var int, stop: var bool): OpH {.inline, nimcall.}
proc dec(val: var int, code: seq[Op], pc: var int, stop: var bool): OpH {.inline, nimcall.}
proc mul2(val: var int, code: seq[Op], pc: var int, stop: var bool): OpH {.inline, nimcall.}
proc div2(val: var int, code: seq[Op], pc: var int, stop: var bool): OpH {.inline, nimcall.}
proc add7(val: var int, code: seq[Op], pc: var int, stop: var bool): OpH {.inline, nimcall.}
proc neg(val: var int, code: seq[Op], pc: var int, stop: var bool): OpH {.inline, nimcall.}
let funcTableNext: FuncTableNext = [
Halt: OpH(handler: halt),
Inc: OpH(handler: inc),
Dec: OpH(handler: dec),
Mul2: OpH(handler: mul2),
Div2: OpH(handler: div2),
Add7: OpH(handler: add7),
Neg: OpH(handler: neg)
]
proc halt(val: var int, code: seq[Op], pc: var int, stop: var bool): OpH {.inline, nimcall.}=
stop = true
proc inc(val: var int, code: seq[Op], pc: var int, stop: var bool): OpH {.inline, nimcall.}=
inc val
inc pc
result = funcTableNext[code[pc]]
proc dec(val: var int, code: seq[Op], pc: var int, stop: var bool): OpH {.inline, nimcall.}=
dec val
inc pc
result = funcTableNext[code[pc]]
proc mul2(val: var int, code: seq[Op], pc: var int, stop: var bool): OpH {.inline, nimcall.}=
val *= 2
inc pc
result = funcTableNext[code[pc]]
proc div2(val: var int, code: seq[Op], pc: var int, stop: var bool): OpH {.inline, nimcall.}=
val = val div 2
inc pc
result = funcTableNext[code[pc]]
proc add7(val: var int, code: seq[Op], pc: var int, stop: var bool): OpH {.inline, nimcall.}=
inc val, 7
inc pc
result = funcTableNext[code[pc]]
proc neg(val: var int, code: seq[Op], pc: var int, stop: var bool): OpH {.inline, nimcall.}=
val = -val
inc pc
result = funcTableNext[code[pc]]
proc interp_handlers(code: seq[Op], initVal: int): int =
# Requires dense enum
var
pc = 0
stop = false
oph = funcTableNext[code[pc]]
result = initVal
while not stop:
oph = oph.handler(result, code, pc, stop)
#################################################################################################################
type
OpD = ref object {.inheritable.}
Ohalt {.final.}= ref object of OpD
Oinc {.final.}= ref object of OpD
Odec {.final.}= ref object of OpD
Omul2 {.final.}= ref object of OpD
Odiv2 {.final.}= ref object of OpD
Oadd7 {.final.}= ref object of OpD
Oneg {.final.}= ref object of OpD
FuncTableToken = array[Op, OpD]
method execute(op: OpD, result: var int, stop: var bool) {.base, inline, noSideEffect.} =
raise newException(ValueError, "To override")
method execute(op: Ohalt, result: var int, stop: var bool) {.inline, noSideEffect.}=
stop = true
method execute(op: Oinc, result: var int, stop: var bool) {.inline, noSideEffect.}=
inc result
method execute(op: Odec, result: var int, stop: var bool) {.inline, noSideEffect.}=
dec result
method execute(op: Omul2, result: var int, stop: var bool) {.inline, noSideEffect.}=
result *= 2
method execute(op: Odiv2, result: var int, stop: var bool) {.inline, noSideEffect.}=
result = result div 2
method execute(op: Oadd7, result: var int, stop: var bool) {.inline, noSideEffect.}=
inc result, 7
method execute(op: Oneg, result: var int, stop: var bool) {.inline, noSideEffect.}=
result = -result
let funcTableToken: FuncTableToken = [
Halt: Ohalt(),
Inc: Oinc(),
Dec: Odec(),
Mul2: Omul2(),
Div2: Odiv2(),
Add7: Oadd7(),
Neg: Oneg()
]
proc interp_methods(code: seq[Op], initVal: int): int =
# Requires dense enum
var
pc = 0
stop = false
opt: OpD
result = initVal
while not stop:
opt = funcTableToken[code[pc]]
opt.execute(result, stop)
inc pc
#################################################################################################################
import random, sequtils, times, os, strutils, strformat
const Nb_Instructions = 1_000_000_000
template bench(impl: untyped) =
let start = cpuTime()
let r = impl(instructions, n)
let stop = cpuTIme()
let elapsed = stop - start
echo "result: " & $r
let procname = impl.astToStr
let mips = (Nb_Instructions.float / (1_000_000.0 * elapsed))
echo procname & " took " & $elapsed & "s for " & $Nb_Instructions & " instructions: " & $mips & " Mips (M instructions/s)"
proc main(n: int)=
randomize(42)
let ops = [Inc, Dec, Mul2, Div2, Add7, Neg]
let instructions = newSeqWith(Nb_Instructions, rand(ops)) & Halt
bench(interp_switch)
bench(interp_cgoto) # requires dense enum (no holes)
bench(interp_ftable) # requires dense enum (no holes) or tables (instead of arrays)
bench(interp_handlers) # requires dense enum (no holes) or tables (instead of arrays)
bench(interp_methods) # requires dense enum (no holes) or tables (instead of arrays)
# Warmup
var start = cpuTime()
block:
var foo = 123
for i in 0 ..< 1_000_000_000:
foo += i*i mod 456
foo = foo mod 789
# Compiler shouldn't optimize away the results as cpuTime rely on sideeffects
var stop = cpuTime()
echo "Warmup: " & $(stop - start) & "s"
# Main loop
let arguments = commandLineParams()
let initial = if arguments.len > 0: parseInt($arguments[0])
else: 1
main(initial)
## Results on i5-5257U (Broadwell mobile dual core 2.7 turbo 3.1Ghz)
# Note that since Haswell, Intel CPU are significantly improed on Switch prediction
# This probably won't carry to ARM devices
# Warmup: 4.081501s
# result: -14604293096444
# interp_switch took 8.604712000000003s for 1000000000 instructions: 116.2153945419672 Mips (M instructions/s)
# result: -14604293096444
# interp_cgoto took 7.367597000000004s for 1000000000 instructions: 135.7294651159665 Mips (M instructions/s)
# result: -201628509198920 <--- some bug here to fix
# interp_ftable took 8.957571000000002s for 1000000000 instructions: 111.6374070604631 Mips (M instructions/s)
# result: -14604293096444
# interp_handlers took 11.039072s for 1000000000 instructions: 90.58732473164413 Mips (M instructions/s)
# result: -14604293096444
# interp_methods took 23.359635s for 1000000000 instructions: 42.80888806695823 Mips (M instructions/s)