-
Notifications
You must be signed in to change notification settings - Fork 538
/
mod.rs
811 lines (760 loc) · 34.2 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
#[cfg(not(feature = "std"))]
use alloc::{
format,
string::{String, ToString},
};
use core::fmt::{Display, Formatter};
use cairo_lang_utils::bigint::BigIntAsHex;
use indoc::formatdoc;
use crate::operand::{CellRef, DerefOrImmediate, ResOperand};
#[cfg(test)]
mod test;
// Represents a cairo hint.
// Note: Hint encoding should be backwards-compatible. This is an API guarantee.
// For example, new variants should have new `index`.
#[derive(Debug, Eq, PartialEq, Clone)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize), serde(untagged))]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(
feature = "parity-scale-codec",
derive(parity_scale_codec::Encode, parity_scale_codec::Decode)
)]
pub enum Hint {
#[cfg_attr(feature = "parity-scale-codec", codec(index = 0))]
Core(CoreHintBase),
#[cfg_attr(feature = "parity-scale-codec", codec(index = 1))]
Starknet(StarknetHint),
}
impl Hint {
pub fn representing_string(&self) -> String {
format!("{:?}", self)
}
}
impl From<CoreHint> for Hint {
fn from(value: CoreHint) -> Self {
Hint::Core(value.into())
}
}
impl From<StarknetHint> for Hint {
fn from(value: StarknetHint) -> Self {
Hint::Starknet(value)
}
}
/// A trait for displaying the pythonic version of a hint.
/// Should only be used from within the compiler.
pub trait PythonicHint {
fn get_pythonic_hint(&self) -> String;
}
impl PythonicHint for Hint {
fn get_pythonic_hint(&self) -> String {
match self {
Hint::Core(hint) => hint.get_pythonic_hint(),
Hint::Starknet(hint) => hint.get_pythonic_hint(),
}
}
}
/// Represents a hint that triggers a system call.
#[derive(Debug, Eq, PartialEq, Clone)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(
feature = "parity-scale-codec",
derive(parity_scale_codec::Encode, parity_scale_codec::Decode)
)]
pub enum StarknetHint {
#[cfg_attr(feature = "parity-scale-codec", codec(index = 0))]
SystemCall { system: ResOperand },
#[cfg_attr(feature = "parity-scale-codec", codec(index = 1))]
#[cfg_attr(feature = "schemars", schemars(skip))]
Cheatcode {
selector: BigIntAsHex,
input_start: ResOperand,
input_end: ResOperand,
output_start: CellRef,
output_end: CellRef,
},
}
// Represents a cairo core hint.
#[derive(Debug, Eq, PartialEq, Clone)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize), serde(untagged))]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(
feature = "parity-scale-codec",
derive(parity_scale_codec::Encode, parity_scale_codec::Decode)
)]
pub enum CoreHintBase {
#[cfg_attr(feature = "parity-scale-codec", codec(index = 0))]
Core(CoreHint),
#[cfg_attr(feature = "parity-scale-codec", codec(index = 1))]
Deprecated(DeprecatedHint),
}
impl From<CoreHint> for CoreHintBase {
fn from(value: CoreHint) -> Self {
CoreHintBase::Core(value)
}
}
impl From<DeprecatedHint> for CoreHintBase {
fn from(value: DeprecatedHint) -> Self {
CoreHintBase::Deprecated(value)
}
}
#[derive(Debug, Eq, PartialEq, Clone)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(
feature = "parity-scale-codec",
derive(parity_scale_codec::Encode, parity_scale_codec::Decode)
)]
pub enum CoreHint {
#[cfg_attr(feature = "parity-scale-codec", codec(index = 0))]
AllocSegment { dst: CellRef },
#[cfg_attr(feature = "parity-scale-codec", codec(index = 1))]
TestLessThan { lhs: ResOperand, rhs: ResOperand, dst: CellRef },
#[cfg_attr(feature = "parity-scale-codec", codec(index = 2))]
TestLessThanOrEqual { lhs: ResOperand, rhs: ResOperand, dst: CellRef },
/// Variant of TestLessThanOrEqual that compares addresses.
#[cfg_attr(feature = "parity-scale-codec", codec(index = 28))]
TestLessThanOrEqualAddress { lhs: ResOperand, rhs: ResOperand, dst: CellRef },
/// Multiplies two 128-bit integers and returns two 128-bit integers: the high and low parts of
/// the product.
#[cfg_attr(feature = "parity-scale-codec", codec(index = 3))]
WideMul128 { lhs: ResOperand, rhs: ResOperand, high: CellRef, low: CellRef },
/// Computes lhs/rhs and returns the quotient and remainder.
///
/// Note: the hint may be used to write an already assigned memory cell.
#[cfg_attr(feature = "parity-scale-codec", codec(index = 4))]
DivMod { lhs: ResOperand, rhs: ResOperand, quotient: CellRef, remainder: CellRef },
/// Divides dividend (represented by 2 128bit limbs) by divisor (represented by 2 128bit
/// limbs). Returns the quotient (represented by 2 128bit limbs) and remainder (represented by
/// 2 128bit limbs). In all cases - `name`0 is the least significant limb.
#[cfg_attr(feature = "parity-scale-codec", codec(index = 5))]
Uint256DivMod {
dividend0: ResOperand,
dividend1: ResOperand,
divisor0: ResOperand,
divisor1: ResOperand,
quotient0: CellRef,
quotient1: CellRef,
remainder0: CellRef,
remainder1: CellRef,
},
/// Divides dividend (represented by 4 128bit limbs) by divisor (represented by 2 128bit
/// limbs). Returns the quotient (represented by 4 128bit limbs) and remainder (represented
/// by 2 128bit limbs).
/// In all cases - `name`0 is the least significant limb.
#[cfg_attr(feature = "parity-scale-codec", codec(index = 6))]
Uint512DivModByUint256 {
dividend0: ResOperand,
dividend1: ResOperand,
dividend2: ResOperand,
dividend3: ResOperand,
divisor0: ResOperand,
divisor1: ResOperand,
quotient0: CellRef,
quotient1: CellRef,
quotient2: CellRef,
quotient3: CellRef,
remainder0: CellRef,
remainder1: CellRef,
},
#[cfg_attr(feature = "parity-scale-codec", codec(index = 7))]
SquareRoot { value: ResOperand, dst: CellRef },
/// Computes the square root of value_low<<128+value_high, stores the 64bit limbs of the result
/// in sqrt0 and sqrt1 as well as the 128bit limbs of the remainder in remainder_low and
/// remainder_high. The remainder is defined as `value - sqrt**2`.
/// Lastly it checks weather `2*sqrt - remainder >= 2**128`.
#[cfg_attr(feature = "parity-scale-codec", codec(index = 8))]
Uint256SquareRoot {
value_low: ResOperand,
value_high: ResOperand,
sqrt0: CellRef,
sqrt1: CellRef,
remainder_low: CellRef,
remainder_high: CellRef,
sqrt_mul_2_minus_remainder_ge_u128: CellRef,
},
/// Finds some `x` and `y` such that `x * scalar + y = value` and `x <= max_x`.
#[cfg_attr(feature = "parity-scale-codec", codec(index = 9))]
LinearSplit { value: ResOperand, scalar: ResOperand, max_x: ResOperand, x: CellRef, y: CellRef },
/// Allocates a new dict segment, and write its start address into the dict_infos segment.
#[cfg_attr(feature = "parity-scale-codec", codec(index = 10))]
AllocFelt252Dict { segment_arena_ptr: ResOperand },
/// Fetch the previous value of a key in a dict, and write it in a new dict access.
#[cfg_attr(feature = "parity-scale-codec", codec(index = 11))]
Felt252DictEntryInit { dict_ptr: ResOperand, key: ResOperand },
/// Similar to Felt252DictWrite, but updates an existing entry and does not write the previous
/// value to the stack.
#[cfg_attr(feature = "parity-scale-codec", codec(index = 12))]
Felt252DictEntryUpdate { dict_ptr: ResOperand, value: ResOperand },
/// Retrieves the index of the given dict in the dict_infos segment.
#[cfg_attr(feature = "parity-scale-codec", codec(index = 13))]
GetSegmentArenaIndex { dict_end_ptr: ResOperand, dict_index: CellRef },
/// Initialized the lists of accesses of each key of a dict as a preparation of squash_dict.
#[cfg_attr(feature = "parity-scale-codec", codec(index = 14))]
InitSquashData {
dict_accesses: ResOperand,
ptr_diff: ResOperand,
n_accesses: ResOperand,
big_keys: CellRef,
first_key: CellRef,
},
/// Retrieves the current index of a dict access to process.
#[cfg_attr(feature = "parity-scale-codec", codec(index = 15))]
GetCurrentAccessIndex { range_check_ptr: ResOperand },
/// Writes if the squash_dict loop should be skipped.
#[cfg_attr(feature = "parity-scale-codec", codec(index = 16))]
ShouldSkipSquashLoop { should_skip_loop: CellRef },
/// Writes the delta from the current access index to the next one.
#[cfg_attr(feature = "parity-scale-codec", codec(index = 17))]
GetCurrentAccessDelta { index_delta_minus1: CellRef },
/// Writes if the squash_dict loop should be continued.
#[cfg_attr(feature = "parity-scale-codec", codec(index = 18))]
ShouldContinueSquashLoop { should_continue: CellRef },
/// Writes the next dict key to process.
#[cfg_attr(feature = "parity-scale-codec", codec(index = 19))]
GetNextDictKey { next_key: CellRef },
/// Finds the two small arcs from within [(0,a),(a,b),(b,PRIME)] and writes it to the
/// range_check segment.
#[cfg_attr(feature = "parity-scale-codec", codec(index = 20))]
AssertLeFindSmallArcs { range_check_ptr: ResOperand, a: ResOperand, b: ResOperand },
/// Writes if the arc (0,a) was excluded.
#[cfg_attr(feature = "parity-scale-codec", codec(index = 21))]
AssertLeIsFirstArcExcluded { skip_exclude_a_flag: CellRef },
/// Writes if the arc (a,b) was excluded.
#[cfg_attr(feature = "parity-scale-codec", codec(index = 22))]
AssertLeIsSecondArcExcluded { skip_exclude_b_minus_a: CellRef },
/// Samples a random point on the EC.
#[cfg_attr(feature = "parity-scale-codec", codec(index = 23))]
RandomEcPoint { x: CellRef, y: CellRef },
/// Computes the square root of `val`, if `val` is a quadratic residue, and of `3 * val`
/// otherwise.
///
/// Since 3 is not a quadratic residue, exactly one of `val` and `3 * val` is a quadratic
/// residue (unless `val` is 0). This allows proving that `val` is not a quadratic residue.
#[cfg_attr(feature = "parity-scale-codec", codec(index = 24))]
FieldSqrt { val: ResOperand, sqrt: CellRef },
/// Prints the values from start to end.
/// Both must be pointers.
#[cfg_attr(feature = "parity-scale-codec", codec(index = 25))]
DebugPrint { start: ResOperand, end: ResOperand },
/// Returns an address with `size` free locations afterwards.
#[cfg_attr(feature = "parity-scale-codec", codec(index = 26))]
AllocConstantSize { size: ResOperand, dst: CellRef },
/// Provides the inverse of b (represented by 2 128-bit limbs) modulo n (represented by 2
/// 128-bit limbs), or a proof that b has no inverse.
///
/// In case b has an inverse: Returns `r` and `k` such that:
/// * `r = 1 / b (mod n)`
/// * `k = (r * b - 1) / n`
/// * `g0_or_no_inv = 0`
///
/// In case b has no inverse: Returns `g`, `s`, and `t`, such that:
/// `g > 1`
/// `g == 2 || g % 2 == 1` (in particular, `g0_or_no_inv = g0 != 0`)
/// `g * s = b`
/// `g * t = n`
///
/// The case `n == 1` is considered "no-inverse" (special case).
/// In this case: Returns `g == 1`, `s == b` and `t == 1`.
/// All no-inverse requirements are satisfied, except for `g > 1`.
///
/// In all cases - `name`0 is the least significant limb.
#[cfg_attr(feature = "parity-scale-codec", codec(index = 27))]
U256InvModN {
b0: ResOperand,
b1: ResOperand,
n0: ResOperand,
n1: ResOperand,
g0_or_no_inv: CellRef,
g1_option: CellRef,
s_or_r0: CellRef,
s_or_r1: CellRef,
t_or_k0: CellRef,
t_or_k1: CellRef,
},
#[cfg_attr(feature = "parity-scale-codec", codec(index = 28))]
EvalCircuit {
n_add_mods: ResOperand,
add_mod_builtin: ResOperand,
n_mul_mods: ResOperand,
mul_mod_builtin: ResOperand,
},
}
/// Represents a deprecated hint which is kept for backward compatibility of previously deployed
/// contracts.
#[derive(Debug, Eq, PartialEq, Clone)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(
feature = "parity-scale-codec",
derive(parity_scale_codec::Encode, parity_scale_codec::Decode)
)]
pub enum DeprecatedHint {
/// Asserts that the current access indices list is empty (after the loop).
#[cfg_attr(feature = "parity-scale-codec", codec(index = 0))]
AssertCurrentAccessIndicesIsEmpty,
/// Asserts that the number of used accesses is equal to the length of the original accesses
/// list.
#[cfg_attr(feature = "parity-scale-codec", codec(index = 1))]
AssertAllAccessesUsed { n_used_accesses: CellRef },
/// Asserts that the keys list is empty.
#[cfg_attr(feature = "parity-scale-codec", codec(index = 2))]
AssertAllKeysUsed,
/// Asserts that the arc (b, PRIME) was excluded.
#[cfg_attr(feature = "parity-scale-codec", codec(index = 3))]
AssertLeAssertThirdArcExcluded,
/// Asserts that the input represents integers and that a<b.
#[cfg_attr(feature = "parity-scale-codec", codec(index = 4))]
AssertLtAssertValidInput { a: ResOperand, b: ResOperand },
/// Retrieves and writes the value corresponding to the given dict and key from the vm
/// dict_manager.
#[cfg_attr(feature = "parity-scale-codec", codec(index = 5))]
Felt252DictRead { dict_ptr: ResOperand, key: ResOperand, value_dst: CellRef },
/// Sets the value corresponding to the key in the vm dict_manager.
#[cfg_attr(feature = "parity-scale-codec", codec(index = 6))]
Felt252DictWrite { dict_ptr: ResOperand, key: ResOperand, value: ResOperand },
}
struct DerefOrImmediateFormatter<'a>(&'a DerefOrImmediate);
impl<'a> Display for DerefOrImmediateFormatter<'a> {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
match self.0 {
DerefOrImmediate::Deref(d) => write!(f, "memory{d}"),
DerefOrImmediate::Immediate(i) => write!(f, "{}", i.value),
}
}
}
struct ResOperandAsIntegerFormatter<'a>(&'a ResOperand);
impl<'a> Display for ResOperandAsIntegerFormatter<'a> {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
match self.0 {
ResOperand::Deref(d) => write!(f, "memory{d}"),
ResOperand::DoubleDeref(d, i) => write!(f, "memory[memory{d} + {i}]"),
ResOperand::Immediate(i) => write!(f, "{}", i.value),
ResOperand::BinOp(bin_op) => {
write!(
f,
"(memory{} {} {}) % PRIME",
bin_op.a,
bin_op.op,
DerefOrImmediateFormatter(&bin_op.b)
)
}
}
}
}
struct ResOperandAsAddressFormatter<'a>(&'a ResOperand);
impl<'a> Display for ResOperandAsAddressFormatter<'a> {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
match self.0 {
ResOperand::Deref(d) => write!(f, "memory{d}"),
ResOperand::DoubleDeref(d, i) => write!(f, "memory[memory{d} + {i}]"),
ResOperand::Immediate(i) => {
unreachable!("Address cannot be an immediate: {}.", i.value)
}
ResOperand::BinOp(bin_op) => {
write!(
f,
"memory{} {} {}",
bin_op.a,
bin_op.op,
DerefOrImmediateFormatter(&bin_op.b)
)
}
}
}
}
impl PythonicHint for CoreHintBase {
fn get_pythonic_hint(&self) -> String {
match self {
CoreHintBase::Core(hint) => hint.get_pythonic_hint(),
CoreHintBase::Deprecated(_) => {
unreachable!("Deprecated hints do not have a pythonic version.")
}
}
}
}
impl PythonicHint for CoreHint {
fn get_pythonic_hint(&self) -> String {
match self {
CoreHint::AllocSegment { dst } => format!("memory{dst} = segments.add()"),
CoreHint::AllocFelt252Dict { segment_arena_ptr } => {
let segment_arena_ptr = ResOperandAsAddressFormatter(segment_arena_ptr);
formatdoc! {"
if '__dict_manager' not in globals():
from starkware.cairo.common.dict import DictManager
__dict_manager = DictManager()
if '__segment_index_to_arena_index' not in globals():
# A map from the relocatable value segment index to the index in the
# arena.
__segment_index_to_arena_index = {{}}
# {segment_arena_ptr} is the address of the next SegmentArenaBuiltin.
# memory[{segment_arena_ptr} - 2] is the number of allocated segments.
index = memory[{segment_arena_ptr} - 2]
segment_start = __dict_manager.new_default_dict(
segments, 0, temp_segment=index > 0
)
# Update '__segment_index_to_arena_index'.
__segment_index_to_arena_index[segment_start.segment_index] = index
# Update 'SegmentInfo::start'.
# memory[{segment_arena_ptr} - 3] is the address of the segment arena infos
# segment. index * 3 is added to get the address of the new SegmentInfo.
memory[memory[{segment_arena_ptr} - 3] + index * 3] = segment_start
"}
}
CoreHint::Felt252DictEntryInit { dict_ptr, key } => {
let (dict_ptr, key) =
(ResOperandAsAddressFormatter(dict_ptr), ResOperandAsIntegerFormatter(key));
formatdoc! {"
dict_tracker = __dict_manager.get_tracker({dict_ptr})
dict_tracker.current_ptr += 3
memory[{dict_ptr} + 1] = dict_tracker.data[{key}]
"}
}
CoreHint::Felt252DictEntryUpdate { dict_ptr, value } => {
let (dict_ptr, value) =
(ResOperandAsAddressFormatter(dict_ptr), ResOperandAsIntegerFormatter(value));
formatdoc! {"
dict_tracker = __dict_manager.get_tracker({dict_ptr})
dict_tracker.data[memory[{dict_ptr} - 3]] = {value}
"}
}
CoreHint::TestLessThan { lhs, rhs, dst } => {
format!(
"memory{dst} = {} < {}",
ResOperandAsIntegerFormatter(lhs),
ResOperandAsIntegerFormatter(rhs)
)
}
CoreHint::TestLessThanOrEqual { lhs, rhs, dst } => format!(
"memory{dst} = {} <= {}",
ResOperandAsIntegerFormatter(lhs),
ResOperandAsIntegerFormatter(rhs)
),
CoreHint::TestLessThanOrEqualAddress { lhs, rhs, dst } => format!(
"memory{dst} = {} <= {}",
ResOperandAsAddressFormatter(lhs),
ResOperandAsAddressFormatter(rhs)
),
CoreHint::WideMul128 { lhs, rhs, high, low } => format!(
"(memory{high}, memory{low}) = divmod({} * {}, 2**128)",
ResOperandAsIntegerFormatter(lhs),
ResOperandAsIntegerFormatter(rhs)
),
CoreHint::DivMod { lhs, rhs, quotient, remainder } => format!(
"(memory{quotient}, memory{remainder}) = divmod({}, {})",
ResOperandAsIntegerFormatter(lhs),
ResOperandAsIntegerFormatter(rhs)
),
CoreHint::Uint256DivMod {
dividend0,
dividend1,
quotient0,
quotient1,
divisor0,
divisor1,
remainder0,
remainder1,
} => {
let (dividend0, dividend1, divisor0, divisor1) = (
ResOperandAsIntegerFormatter(dividend0),
ResOperandAsIntegerFormatter(dividend1),
ResOperandAsIntegerFormatter(divisor0),
ResOperandAsIntegerFormatter(divisor1),
);
formatdoc! {"
dividend = {dividend0} + {dividend1} * 2**128
divisor = {divisor0} + {divisor1} * 2**128
quotient, remainder = divmod(dividend, divisor)
memory{quotient0} = quotient & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
memory{quotient1} = quotient >> 128
memory{remainder0} = remainder & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
memory{remainder1} = remainder >> 128
"}
}
CoreHint::Uint512DivModByUint256 {
dividend0,
dividend1,
dividend2,
dividend3,
divisor0,
divisor1,
quotient0,
quotient1,
quotient2,
quotient3,
remainder0,
remainder1,
} => {
let [dividend0, dividend1, dividend2, dividend3, divisor0, divisor1] =
[dividend0, dividend1, dividend2, dividend3, divisor0, divisor1]
.map(ResOperandAsIntegerFormatter);
formatdoc! {"
dividend = {dividend0} + {dividend1} * 2**128 + {dividend2} * 2**256 + \
{dividend3} * 2**384
divisor = {divisor0} + {divisor1} * 2**128
quotient, remainder = divmod(dividend, divisor)
memory{quotient0} = quotient & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
memory{quotient1} = (quotient >> 128) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
memory{quotient2} = (quotient >> 256) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
memory{quotient3} = quotient >> 384
memory{remainder0} = remainder & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
memory{remainder1} = remainder >> 128
"}
}
CoreHint::SquareRoot { value, dst } => {
let value = ResOperandAsIntegerFormatter(value);
formatdoc! {"
import math
memory{dst} = math.isqrt({value})
"}
}
CoreHint::Uint256SquareRoot {
value_low,
value_high,
sqrt0,
sqrt1,
remainder_low,
remainder_high,
sqrt_mul_2_minus_remainder_ge_u128,
} => {
let (value_low, value_high) = (
ResOperandAsIntegerFormatter(value_low),
ResOperandAsIntegerFormatter(value_high),
);
formatdoc! {"
import math;
value = {value_low} + {value_high} * 2**128
root = math.isqrt(value)
remainder = value - root ** 2
memory{sqrt0} = root & 0xFFFFFFFFFFFFFFFF
memory{sqrt1} = root >> 64
memory{remainder_low} = remainder & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
memory{remainder_high} = remainder >> 128
memory{sqrt_mul_2_minus_remainder_ge_u128} = root * 2 - remainder >= 2**128
"}
}
CoreHint::LinearSplit { value, scalar, max_x, x, y } => {
let (value, scalar, max_x) = (
ResOperandAsIntegerFormatter(value),
ResOperandAsIntegerFormatter(scalar),
ResOperandAsIntegerFormatter(max_x),
);
formatdoc! {"
(value, scalar) = ({value}, {scalar})
x = min(value // scalar, {max_x})
y = value - x * scalar
memory{x} = x
memory{y} = y
"}
}
CoreHint::RandomEcPoint { x, y } => {
formatdoc! {"
from starkware.crypto.signature.signature import ALPHA, BETA, FIELD_PRIME
from starkware.python.math_utils import random_ec_point
(memory{x}, memory{y}) = random_ec_point(FIELD_PRIME, ALPHA, BETA)
"}
}
CoreHint::FieldSqrt { val, sqrt } => {
let val = ResOperandAsIntegerFormatter(val);
formatdoc! {"
from starkware.crypto.signature.signature import FIELD_PRIME
from starkware.python.math_utils import is_quad_residue, sqrt
val = {val}
if is_quad_residue(val, FIELD_PRIME):
memory{sqrt} = sqrt(val, FIELD_PRIME)
else:
memory{sqrt} = sqrt(val * 3, FIELD_PRIME)
"}
}
CoreHint::GetCurrentAccessIndex { range_check_ptr } => {
let rc = ResOperandAsAddressFormatter(range_check_ptr);
formatdoc! {"
current_access_indices = sorted(access_indices[key])[::-1]
current_access_index = current_access_indices.pop()
memory[{rc}] = current_access_index
"}
}
CoreHint::ShouldSkipSquashLoop { should_skip_loop } => {
format!("memory{should_skip_loop} = 0 if current_access_indices else 1")
}
CoreHint::GetCurrentAccessDelta { index_delta_minus1 } => formatdoc! {"
new_access_index = current_access_indices.pop()
memory{index_delta_minus1} = new_access_index - current_access_index - 1
current_access_index = new_access_index
"},
CoreHint::ShouldContinueSquashLoop { should_continue } => {
format!("memory{should_continue} = 1 if current_access_indices else 0")
}
CoreHint::GetNextDictKey { next_key } => formatdoc! {"
assert len(keys) > 0, 'No keys left but remaining_accesses > 0.'
memory{next_key} = key = keys.pop()
"},
CoreHint::GetSegmentArenaIndex { dict_end_ptr, dict_index } => {
let dict_end_ptr = ResOperandAsAddressFormatter(dict_end_ptr);
formatdoc! {"
memory{dict_index} = __segment_index_to_arena_index[
{dict_end_ptr}.segment_index
]
"}
}
CoreHint::InitSquashData {
dict_accesses,
ptr_diff,
n_accesses,
big_keys,
first_key,
} => {
let (dict_accesses, ptr_diff, n_accesses) = (
ResOperandAsAddressFormatter(dict_accesses),
ResOperandAsIntegerFormatter(ptr_diff),
ResOperandAsIntegerFormatter(n_accesses),
);
formatdoc! {"
dict_access_size = 3
address = {dict_accesses}
assert {ptr_diff} % dict_access_size == 0, 'Accesses array size must be \
divisible by DictAccess.SIZE'
n_accesses = {n_accesses}
if '__squash_dict_max_size' in globals():
assert n_accesses <= __squash_dict_max_size, f'squash_dict() can only be \
used with n_accesses<={{__squash_dict_max_size}}. ' f'Got: \
n_accesses={{n_accesses}}.'
# A map from key to the list of indices accessing it.
access_indices = {{}}
for i in range(n_accesses):
key = memory[address + dict_access_size * i]
access_indices.setdefault(key, []).append(i)
# Descending list of keys.
keys = sorted(access_indices.keys(), reverse=True)
# Are the keys used bigger than range_check bound.
memory{big_keys} = 1 if keys[0] >= range_check_builtin.bound else 0
memory{first_key} = key = keys.pop()
"}
}
CoreHint::AssertLeFindSmallArcs { range_check_ptr, a, b } => {
let (range_check_ptr, a, b) = (
ResOperandAsAddressFormatter(range_check_ptr),
ResOperandAsIntegerFormatter(a),
ResOperandAsIntegerFormatter(b),
);
formatdoc! {"
import itertools
from starkware.cairo.common.math_utils import assert_integer
assert_integer({a})
assert_integer({b})
a = {a} % PRIME
b = {b} % PRIME
assert a <= b, f'a = {{a}} is not less than or equal to b = {{b}}.'
# Find an arc less than PRIME / 3, and another less than PRIME / 2.
lengths_and_indices = [(a, 0), (b - a, 1), (PRIME - 1 - b, 2)]
lengths_and_indices.sort()
assert lengths_and_indices[0][0] <= PRIME // 3 and lengths_and_indices[1][0] \
<= PRIME // 2
excluded = lengths_and_indices[2][1]
memory[{range_check_ptr} + 1], memory[{range_check_ptr} + 0] = (
divmod(lengths_and_indices[0][0], 3544607988759775765608368578435044694))
memory[{range_check_ptr} + 3], memory[{range_check_ptr} + 2] = (
divmod(lengths_and_indices[1][0], 5316911983139663648412552867652567041))
"}
}
CoreHint::AssertLeIsFirstArcExcluded { skip_exclude_a_flag } => {
format!("memory{skip_exclude_a_flag} = 1 if excluded != 0 else 0",)
}
CoreHint::AssertLeIsSecondArcExcluded { skip_exclude_b_minus_a } => {
format!("memory{skip_exclude_b_minus_a} = 1 if excluded != 1 else 0",)
}
CoreHint::DebugPrint { start, end } => {
let [start, end] = [start, end].map(ResOperandAsAddressFormatter);
formatdoc! {"
curr = {start}
end = {end}
while curr != end:
print(hex(memory[curr]))
curr += 1
"}
}
CoreHint::AllocConstantSize { size, dst } => {
let size = ResOperandAsIntegerFormatter(size);
formatdoc! {"
if '__boxed_segment' not in globals():
__boxed_segment = segments.add()
memory{dst} = __boxed_segment
__boxed_segment += {size}
"}
}
CoreHint::U256InvModN {
b0,
b1,
n0,
n1,
g0_or_no_inv,
g1_option,
s_or_r0,
s_or_r1,
t_or_k0,
t_or_k1,
} => {
let [b0, b1, n0, n1] = [b0, b1, n0, n1].map(ResOperandAsIntegerFormatter);
formatdoc! {"
from starkware.python.math_utils import igcdex
b = {b0} + ({b1} << 128)
n = {n0} + ({n1} << 128)
(_, r, g) = igcdex(n, b)
if n == 1:
memory{g0_or_no_inv} = 1
memory{g1_option} = 0
memory{s_or_r0} = {b0}
memory{s_or_r1} = {b1}
memory{t_or_k0} = 1
memory{t_or_k1} = 0
elif g != 1:
if g % 2 == 0:
g = 2
s = b // g
t = n // g
memory{g0_or_no_inv} = g & 0xffffffffffffffffffffffffffffffff
memory{g1_option} = g >> 128
memory{s_or_r0} = s & 0xffffffffffffffffffffffffffffffff
memory{s_or_r1} = s >> 128
memory{t_or_k0} = t & 0xffffffffffffffffffffffffffffffff
memory{t_or_k1} = t >> 128
else:
r %= n
k = (r * b - 1) // n
memory{g0_or_no_inv} = 0
memory{s_or_r0} = r & 0xffffffffffffffffffffffffffffffff
memory{s_or_r1} = r >> 128
memory{t_or_k0} = k & 0xffffffffffffffffffffffffffffffff
memory{t_or_k1} = k >> 128
"}
}
CoreHint::EvalCircuit { n_add_mods, add_mod_builtin, n_mul_mods, mul_mod_builtin } => {
let n_add_mods = ResOperandAsIntegerFormatter(n_add_mods);
let add_mod_builtin = ResOperandAsAddressFormatter(add_mod_builtin);
let n_mul_mods = ResOperandAsIntegerFormatter(n_mul_mods);
let mul_mod_builtin = ResOperandAsAddressFormatter(mul_mod_builtin);
formatdoc! {"
from starkware.cairo.lang.builtins.modulo.mod_builtin_runner import ModBuiltinRunner
ModBuiltinRunner.fill_memory(
memory=memory,
add_mod=({add_mod_builtin}, builtin_runners[\"add_mod_builtin\"], {n_add_mods}),
mul_mod=({mul_mod_builtin}, builtin_runners[\"mul_mod_builtin\"], {n_mul_mods}),
)
"}
}
}
}
}
impl PythonicHint for StarknetHint {
fn get_pythonic_hint(&self) -> String {
match self {
StarknetHint::SystemCall { system } => {
format!(
"syscall_handler.syscall(syscall_ptr={})",
ResOperandAsAddressFormatter(system)
)
}
StarknetHint::Cheatcode { .. } => "raise NotImplementedError".to_string(),
}
}
}