-
Notifications
You must be signed in to change notification settings - Fork 278
/
Copy pathvm_core.py
503 lines (439 loc) · 20.1 KB
/
vm_core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
import copy
import dataclasses
from functools import lru_cache
from typing import Any, Dict, List, Optional, Set, Tuple
from starkware.cairo.lang.compiler.encode import decode_instruction
from starkware.cairo.lang.compiler.instruction import Instruction, Register
from starkware.cairo.lang.compiler.program import ProgramBase
from starkware.cairo.lang.vm.builtin_runner import BuiltinRunner
from starkware.cairo.lang.vm.memory_dict import MemoryDict
from starkware.cairo.lang.vm.relocatable import MaybeRelocatable, RelocatableValue
from starkware.cairo.lang.vm.trace_entry import TraceEntry
from starkware.cairo.lang.vm.virtual_machine_base import RunContextBase, VirtualMachineBase
from starkware.cairo.lang.vm.vm_exceptions import PureValueError
from starkware.python.math_utils import div_mod
@dataclasses.dataclass
class Operands:
"""
Values of the operands.
"""
dst: MaybeRelocatable
res: Optional[MaybeRelocatable]
op0: MaybeRelocatable
op1: MaybeRelocatable
@dataclasses.dataclass
class RunContext(RunContextBase):
"""
Contains a complete state of the virtual machine. This includes registers and memory.
"""
memory: MemoryDict
pc: MaybeRelocatable
ap: MaybeRelocatable
fp: MaybeRelocatable
prime: int
def get_instruction_encoding(self) -> Tuple[int, Optional[int]]:
"""
Returns the encoded instruction (the value at pc) and the immediate value (the value at
pc + 1, if it exists in the memory).
"""
instruction_encoding = self.memory[self.pc]
assert isinstance(
instruction_encoding, int
), f"Instruction should be an int. Found: {instruction_encoding}"
imm_addr = (self.pc + 1) % self.prime
optional_imm = self.memory.get(imm_addr)
if not isinstance(optional_imm, int):
optional_imm = None
return instruction_encoding, optional_imm
def compute_dst_addr(self, instruction: Instruction):
base_addr: MaybeRelocatable
if instruction.dst_register is Register.AP:
base_addr = self.ap
elif instruction.dst_register is Register.FP:
base_addr = self.fp
else:
raise NotImplementedError("Invalid dst_register value")
return (base_addr + instruction.off0) % self.prime
def compute_op0_addr(self, instruction: Instruction):
base_addr: MaybeRelocatable
if instruction.op0_register is Register.AP:
base_addr = self.ap
elif instruction.op0_register is Register.FP:
base_addr = self.fp
else:
raise NotImplementedError("Invalid op0_register value")
return (base_addr + instruction.off1) % self.prime
def compute_op1_addr(self, instruction: Instruction, op0: Optional[MaybeRelocatable]):
base_addr: MaybeRelocatable
if instruction.op1_addr is Instruction.Op1Addr.FP:
base_addr = self.fp
elif instruction.op1_addr is Instruction.Op1Addr.AP:
base_addr = self.ap
elif instruction.op1_addr is Instruction.Op1Addr.IMM:
assert instruction.off2 == 1, "In immediate mode, off2 should be 1."
base_addr = self.pc
elif instruction.op1_addr is Instruction.Op1Addr.OP0:
assert op0 is not None, "op0 must be known in double dereference."
base_addr = op0
else:
raise NotImplementedError("Invalid op1_register value")
return (base_addr + instruction.off2) % self.prime
class VirtualMachine(VirtualMachineBase):
run_context: RunContext
def __init__(
self,
program: ProgramBase,
run_context: RunContext,
hint_locals: Dict[str, Any],
static_locals: Optional[Dict[str, Any]] = None,
builtin_runners: Optional[Dict[str, BuiltinRunner]] = None,
program_base: Optional[MaybeRelocatable] = None,
enable_instruction_trace: bool = True,
):
"""
See documentation in VirtualMachineBase.
program_base - The pc of the first instruction in program (default is run_context.pc).
"""
self.run_context = copy.copy(run_context) # Shallow copy.
if program_base is None:
program_base = run_context.pc
if builtin_runners is None:
builtin_runners = {}
super().__init__(
program=program,
run_context=self.run_context,
hint_locals=hint_locals,
static_locals=static_locals,
builtin_runners=builtin_runners,
program_base=program_base,
)
# A set to track the memory addresses accessed by actual Cairo instructions (as opposed to
# hints), necessary for accurate counting of memory holes.
self.accessed_addresses: Set[MaybeRelocatable] = {
program_base + i for i in range(len(self.program.data))
}
self._trace: Optional[List[TraceEntry[MaybeRelocatable]]] = (
[] if enable_instruction_trace else None
)
# Current step.
self.current_step = 0
# This flag can be set to true by hints to avoid the execution of the current step in
# step() (so that only the hint will be performed, but nothing else will happen).
self.skip_instruction_execution = False
# Set this flag to False to avoid tracking register values each instruction.
self.enable_instruction_trace = enable_instruction_trace
@property
def trace(self) -> List[TraceEntry[MaybeRelocatable]]:
assert self._trace is not None, "Trace is disabled."
return self._trace
def update_registers(self, instruction: Instruction, operands: Operands):
# Update fp.
if instruction.fp_update is Instruction.FpUpdate.AP_PLUS2:
self.run_context.fp = self.run_context.ap + 2
elif instruction.fp_update is Instruction.FpUpdate.DST:
self.run_context.fp = operands.dst
elif instruction.fp_update is not Instruction.FpUpdate.REGULAR:
raise NotImplementedError("Invalid fp_update value")
# Update ap.
if instruction.ap_update is Instruction.ApUpdate.ADD:
if operands.res is None:
raise NotImplementedError("Res.UNCONSTRAINED cannot be used with ApUpdate.ADD")
self.run_context.ap += operands.res % self.prime
elif instruction.ap_update is Instruction.ApUpdate.ADD1:
self.run_context.ap += 1
elif instruction.ap_update is Instruction.ApUpdate.ADD2:
self.run_context.ap += 2
elif instruction.ap_update is not Instruction.ApUpdate.REGULAR:
raise NotImplementedError("Invalid ap_update value")
self.run_context.ap = self.run_context.ap % self.prime
# Update pc.
# The pc update should be done last so that we will have the correct pc in case of an
# exception during one of the updates above.
if instruction.pc_update is Instruction.PcUpdate.REGULAR:
self.run_context.pc += instruction.size
elif instruction.pc_update is Instruction.PcUpdate.JUMP:
if operands.res is None:
raise NotImplementedError("Res.UNCONSTRAINED cannot be used with PcUpdate.JUMP")
self.run_context.pc = operands.res
elif instruction.pc_update is Instruction.PcUpdate.JUMP_REL:
if operands.res is None:
raise NotImplementedError("Res.UNCONSTRAINED cannot be used with PcUpdate.JUMP_REL")
if not isinstance(operands.res, int):
raise PureValueError("jmp rel", operands.res)
self.run_context.pc += operands.res
elif instruction.pc_update is Instruction.PcUpdate.JNZ:
if self.is_zero(operands.dst):
self.run_context.pc += instruction.size
else:
self.run_context.pc += operands.op1
else:
raise NotImplementedError("Invalid pc_update value")
self.run_context.pc = self.run_context.pc % self.prime
def deduce_op0(
self,
instruction: Instruction,
dst: Optional[MaybeRelocatable],
op1: Optional[MaybeRelocatable],
) -> Tuple[Optional[MaybeRelocatable], Optional[MaybeRelocatable]]:
"""
Returns a tuple (deduced_op0, deduced_res).
Deduces the value of op0 if possible (based on dst and op1). Otherwise, returns None.
If res was already deduced, returns its deduced value as well.
"""
if instruction.opcode is Instruction.Opcode.CALL:
return self.run_context.pc + instruction.size, None
elif instruction.opcode is Instruction.Opcode.ASSERT_EQ:
if (instruction.res is Instruction.Res.ADD) and (dst is not None) and (op1 is not None):
return (dst - op1) % self.prime, dst # type: ignore
elif (
(instruction.res is Instruction.Res.MUL)
and isinstance(dst, int)
and isinstance(op1, int)
):
assert (
op1 != 0
), f"Cannot deduce operand in '0 = ? * {dst}' (possibly due to division by 0)."
return div_mod(dst, op1, self.prime), dst
return None, None
def deduce_op1(
self,
instruction: Instruction,
dst: Optional[MaybeRelocatable],
op0: Optional[MaybeRelocatable],
) -> Tuple[Optional[MaybeRelocatable], Optional[MaybeRelocatable]]:
"""
Returns a tuple (deduced_op1, deduced_res).
Deduces the value of op1 if possible (based on dst and op0). Otherwise, returns None.
If res was already deduced, returns its deduced value as well.
"""
if instruction.opcode is Instruction.Opcode.ASSERT_EQ:
if (instruction.res is Instruction.Res.OP1) and (dst is not None):
return dst, dst
elif (
(instruction.res is Instruction.Res.ADD) and (dst is not None) and (op0 is not None)
):
return (dst - op0) % self.prime, dst # type: ignore
elif (
(instruction.res is Instruction.Res.MUL)
and isinstance(dst, int)
and isinstance(op0, int)
and op0 != 0
):
return div_mod(dst, op0, self.prime), dst
return None, None
def compute_res(
self,
instruction: Instruction,
op0: MaybeRelocatable,
op1: MaybeRelocatable,
) -> Optional[MaybeRelocatable]:
"""
Computes the value of res if possible.
"""
if instruction.res is Instruction.Res.OP1:
return op1
elif instruction.res is Instruction.Res.ADD:
return (op0 + op1) % self.prime
elif instruction.res is Instruction.Res.MUL:
if isinstance(op0, RelocatableValue) or isinstance(op1, RelocatableValue):
raise PureValueError("*", op0, op1)
return (op0 * op1) % self.prime
elif instruction.res is Instruction.Res.UNCONSTRAINED:
# In this case res should be the inverse of dst.
# For efficiency, we do not compute it here.
return None
else:
raise NotImplementedError("Invalid res value")
def compute_operands(self, instruction: Instruction) -> Tuple[Operands, List[int]]:
"""
Computes the values of the operands. Deduces dst if needed.
Returns:
operands - an Operands instance with the values of the operands.
mem_addresses - the memory addresses for the 3 memory units used (dst, op0, op1).
"""
# Try to fetch dst, op0, op1.
# op0 throughout this function represents the value at op0_addr.
# If op0 is set, this implies that we are going to set memory at op0_addr to that value.
# Same for op1, dst.
dst_addr = self.run_context.compute_dst_addr(instruction)
dst: Optional[MaybeRelocatable] = self.validated_memory.get(dst_addr)
op0_addr = self.run_context.compute_op0_addr(instruction)
op0: Optional[MaybeRelocatable] = self.validated_memory.get(op0_addr)
op1_addr = self.run_context.compute_op1_addr(instruction, op0=op0)
op1: Optional[MaybeRelocatable] = self.validated_memory.get(op1_addr)
# res throughout this function represents the computation on op0,op1
# as defined in decode.py.
# If it is set, this implies that compute_res(...) will return this value.
# If it is set without invoking compute_res(), this is an optimization, but should not
# yield a different result.
# In particular, res may be different than dst, even in ASSERT_EQ. In this case,
# The ASSERT_EQ validation will fail in opcode_assertions().
res: Optional[MaybeRelocatable] = None
# Auto deduction rules.
# Note: This may fail to deduce if 2 auto deduction rules are needed to be used in
# a different order.
if op0 is None:
op0 = self.deduce_memory_cell(op0_addr)
if op1 is None:
op1 = self.deduce_memory_cell(op1_addr)
should_update_dst = dst is None
should_update_op0 = op0 is None
should_update_op1 = op1 is None
# Deduce op0 if needed.
if op0 is None:
op0, deduced_res = self.deduce_op0(instruction, dst, op1)
if res is None:
res = deduced_res
# Deduce op1 if needed.
if op1 is None:
op1, deduced_res = self.deduce_op1(instruction, dst, op0)
if res is None:
res = deduced_res
# Force pulling op0, op1 from memory for soundness test
# and to get an informative error message if they were not computed.
if op0 is None:
op0 = self.validated_memory[op0_addr]
if op1 is None:
op1 = self.validated_memory[op1_addr]
# Compute res if needed.
if res is None:
res = self.compute_res(instruction, op0, op1)
# Deduce dst.
if dst is None:
if instruction.opcode is Instruction.Opcode.ASSERT_EQ and res is not None:
dst = res
elif instruction.opcode is Instruction.Opcode.CALL:
dst = self.run_context.fp
# Force pulling dst from memory for soundness.
if dst is None:
dst = self.validated_memory[dst_addr]
# Write updated values.
if should_update_dst:
self.validated_memory[dst_addr] = dst
if should_update_op0:
self.validated_memory[op0_addr] = op0
if should_update_op1:
self.validated_memory[op1_addr] = op1
return (
Operands(dst=dst, op0=op0, op1=op1, res=res),
[dst_addr, op0_addr, op1_addr],
)
def is_zero(self, value):
"""
Returns True if value is zero (used for jnz instructions).
This function can be overridden by subclasses.
"""
if isinstance(value, int):
return value == 0
if isinstance(value, RelocatableValue) and value.offset >= 0:
return False
raise PureValueError("jmp != 0", value)
def is_integer_value(self, value):
"""
Returns True if value is integer rather than relocatable.
This function can be overridden by subclasses.
"""
return isinstance(value, int)
@staticmethod
@lru_cache(None)
def decode_instruction(encoded_inst: int, imm: Optional[int] = None) -> Instruction:
return decode_instruction(encoded_inst, imm)
def decode_current_instruction(self) -> Instruction:
try:
instruction_encoding, imm = self.run_context.get_instruction_encoding()
instruction = self.decode_instruction(instruction_encoding, imm)
except Exception as exc:
raise self.as_vm_exception(exc) from None
return instruction
def opcode_assertions(self, instruction: Instruction, operands: Operands):
if instruction.opcode is Instruction.Opcode.ASSERT_EQ:
if operands.res is None:
raise NotImplementedError("Res.UNCONSTRAINED cannot be used with Opcode.ASSERT_EQ")
if operands.dst != operands.res and not self.check_eq(operands.dst, operands.res):
raise Exception(
f"An ASSERT_EQ instruction failed: {operands.dst} != {operands.res}."
)
elif instruction.opcode is Instruction.Opcode.CALL:
return_pc = self.run_context.pc + instruction.size
if operands.op0 != return_pc and not self.check_eq(operands.op0, return_pc):
raise Exception(
"Call failed to write return-pc (inconsistent op0): "
+ f"{operands.op0} != {return_pc}. Did you forget to increment ap?"
)
return_fp = self.run_context.fp
if operands.dst != return_fp and not self.check_eq(operands.dst, return_fp):
raise Exception(
"Call failed to write return-fp (inconsistent dst): "
+ f"{operands.dst} != {return_fp}. Did you forget to increment ap?"
)
elif instruction.opcode in [Instruction.Opcode.RET, Instruction.Opcode.NOP]:
# Nothing to check.
pass
else:
raise NotImplementedError(f"Unsupported opcode {instruction.opcode}.")
def run_instruction(self, instruction):
try:
# Compute operands.
operands, operands_mem_addresses = self.compute_operands(instruction)
except Exception as exc:
raise self.as_vm_exception(exc) from None
try:
# Opcode assertions.
self.opcode_assertions(instruction, operands)
except Exception as exc:
raise self.as_vm_exception(exc) from None
# Write to trace.
if self.enable_instruction_trace:
self.trace.append(
TraceEntry(
pc=self.run_context.pc,
ap=self.run_context.ap,
fp=self.run_context.fp,
)
)
self.accessed_addresses.update(operands_mem_addresses)
self.accessed_addresses.add(self.run_context.pc)
try:
# Update registers.
self.update_registers(instruction, operands)
except Exception as exc:
raise self.as_vm_exception(exc) from None
self.current_step += 1
def step(self):
self.skip_instruction_execution = False
# Execute hints.
for hint_index, hint in enumerate(self.hints.get(self.run_context.pc, [])):
exec_locals = self.exec_scopes[-1]
exec_locals["memory"] = memory = self.validated_memory
exec_locals["ap"] = ap = self.run_context.ap
exec_locals["fp"] = fp = self.run_context.fp
exec_locals["pc"] = pc = self.run_context.pc
exec_locals["current_step"] = self.current_step
exec_locals["ids"] = hint.consts(pc, ap, fp, memory)
exec_locals["vm_load_program"] = self.load_program
exec_locals["vm_enter_scope"] = self.enter_scope
exec_locals["vm_exit_scope"] = self.exit_scope
exec_locals.update(self.static_locals)
exec_locals["builtin_runners"] = self.builtin_runners
exec_locals.update(self.builtin_runners)
exec_locals["iter_accessed_addresses"] = lambda: iter(self.accessed_addresses)
self.exec_hint(hint.compiled, exec_locals, hint_index=hint_index)
# There are memory leaks in 'exec_scopes'.
# So, we clear some fields in order to reduce the problem.
for name in self.builtin_runners:
del exec_locals[name]
del exec_locals["builtin_runners"]
for name in self.static_locals:
del exec_locals[name]
del exec_locals["vm_exit_scope"]
del exec_locals["vm_enter_scope"]
del exec_locals["vm_load_program"]
del exec_locals["ids"]
del exec_locals["memory"]
del exec_locals["iter_accessed_addresses"]
if self.skip_instruction_execution:
return
# Decode.
instruction = self.decode_current_instruction()
# Run.
self.run_instruction(instruction)