-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdrivesim_exp.py
243 lines (203 loc) · 10.1 KB
/
drivesim_exp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import time
import os
import torch
import numpy as np
import gymnasium as gym
import argparse
from typing import Any, Dict
from stable_baselines3 import A2C
from stable_baselines3.common.monitor import Monitor
from stable_baselines3.common.vec_env import SubprocVecEnv
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.callbacks import BaseCallback
from torchdriveenv.gym_env import HomogeneousWrapper
from torchdriveenv.env_utils import load_default_train_data, load_default_validation_data
from torchdriveenv.gym_env import GymEnv
from common import BaselineAlgorithm, load_rl_training_config
# Load training and validation data for the environment
training_data = load_default_train_data()
validation_data = load_default_validation_data()
# Set API key for the environment's simulator
os.environ["IAI_API_KEY"] = "ae81W7v2Dt8PFdU3aTZE76uajvdOCnf06oZBPVeU"
class EvalNTimestepsCallback(BaseCallback):
"""
A callback for evaluating the RL model at specific intervals during training.
Parameters:
-----------
eval_env: The environment used for evaluation.
n_steps: Number of timesteps between two evaluations.
eval_n_episodes: Number of episodes to evaluate at each step.
deterministic: Whether to use deterministic actions during evaluation.
log_tab: The log category for recording the results.
"""
def __init__(self, eval_env, n_steps: int, eval_n_episodes: int, deterministic=False, log_tab="eval"):
super().__init__()
self.log_tab = log_tab
self.n_steps = n_steps
self.eval_n_episodes = eval_n_episodes
self.deterministic = deterministic
self.last_time_trigger = 0
self.eval_env = eval_env
def _calc_metrics(self, locals_: Dict[str, Any], globals_: Dict[str, Any]) -> None:
"""
Callback function to calculate metrics after each step.
Parameters:
-----------
locals_: Local variables at the current step.
globals_: Global variables at the current step.
"""
info = locals_["info"]
if "psi_smoothness" not in info:
return
# Collect metrics for each episode
self.psi_smoothness_for_single_episode.append(info["psi_smoothness"])
self.speed_smoothness_for_single_episode.append(info["speed_smoothness"])
# Check for specific conditions like offroad, collision, etc.
if (info["offroad"] > 0 or info["collision"] > 0 or
info["traffic_light_violation"] > 0 or info["is_success"]):
self.episode_num += 1
if info["offroad"] > 0:
self.offroad_num += 1
if info["collision"] > 0:
self.collision_num += 1
if info["traffic_light_violation"] > 0:
self.traffic_light_violation_num += 1
if info["is_success"]:
self.success_num += 1
self.reached_waypoint_nums.append(info["reached_waypoint_num"])
# Calculate episode-level smoothness
if len(self.psi_smoothness_for_single_episode) > 0:
self.psi_smoothness.append(
sum(self.psi_smoothness_for_single_episode) / len(self.psi_smoothness_for_single_episode)
)
if len(self.speed_smoothness_for_single_episode) > 0:
self.speed_smoothness.append(
sum(self.speed_smoothness_for_single_episode) / len(self.speed_smoothness_for_single_episode)
)
def _evaluate(self) -> bool:
"""
Perform evaluation on the environment and record the metrics.
"""
# Reset all metrics
self.episode_num = 0
self.offroad_num = 0
self.collision_num = 0
self.traffic_light_violation_num = 0
self.success_num = 0
self.reached_waypoint_nums = []
self.psi_smoothness = []
self.speed_smoothness = []
mean_episode_reward = 0
mean_episode_length = 0
# Evaluate for the specified number of episodes
for i in range(self.eval_n_episodes):
self.psi_smoothness_for_single_episode = []
self.speed_smoothness_for_single_episode = []
episode_rewards, episode_lengths = evaluate_policy(
self.model,
self.eval_env,
n_eval_episodes=1,
deterministic=self.deterministic,
return_episode_rewards=True,
callback=self._calc_metrics,
)
# Accumulate rewards and lengths
mean_episode_reward += sum(episode_rewards) / len(episode_rewards)
mean_episode_length += sum(episode_lengths) / len(episode_lengths)
mean_episode_reward /= self.eval_n_episodes
mean_episode_length /= self.eval_n_episodes
# Log evaluation results
self.logger.record(f"{self.log_tab}/mean_episode_reward", mean_episode_reward)
self.logger.record(f"{self.log_tab}/mean_episode_length", mean_episode_length)
self.logger.record(f"{self.log_tab}/offroad_rate", self.offroad_num / self.eval_n_episodes)
self.logger.record(f"{self.log_tab}/collision_rate", self.collision_num / self.eval_n_episodes)
self.logger.record(f"{self.log_tab}/traffic_light_violation_rate", self.traffic_light_violation_num / self.eval_n_episodes)
self.logger.record(f"{self.log_tab}/success_percentage", self.success_num / self.eval_n_episodes)
self.logger.record(f"{self.log_tab}/reached_waypoint_num", sum(self.reached_waypoint_nums) / self.eval_n_episodes)
self.logger.record(f"{self.log_tab}/psi_smoothness", sum(self.psi_smoothness) / self.eval_n_episodes)
self.logger.record(f"{self.log_tab}/speed_smoothness", sum(self.speed_smoothness) / self.eval_n_episodes)
def _on_training_start(self) -> None:
"""
Perform evaluation at the start of training.
"""
self._evaluate()
def _on_step(self) -> bool:
"""
Called at each step during training to check if evaluation should be triggered.
"""
if (self.num_timesteps - self.last_time_trigger) >= self.n_steps:
self.last_time_trigger = self.num_timesteps
self._evaluate()
return True
def make_env_(env_config):
"""
Create and configure a training environment.
Parameters:
-----------
env_config: Configuration for the environment.
Returns:
--------
env: The created gym environment.
"""
env = gym.make('Acrobot-v1')
return env
def make_val_env_(env_config):
"""
Create and configure a validation environment.
Parameters:
-----------
env_config: Configuration for the environment.
Returns:
--------
env: The created gym environment.
"""
env = gym.make('Acrobot-v1')
return env
if __name__ == '__main__':
# Command-line argument parser
parser = argparse.ArgumentParser(prog='tde_examples', description='Execute benchmarks for TDE')
parser.add_argument("--config_file", type=str, default="env_configs/multi_agent/a2c_training.yml")
# parser args for number of iterations
parser.add_argument("--iterations", type=int, default=1000000)
args = parser.parse_args()
# Load RL training configuration
rl_training_config = load_rl_training_config(args.config_file)
# Merge configuration parameters for the environment and simulator
config = {k: v for (k, v) in vars(rl_training_config).items() if isinstance(v, (float, int, str, list, dict, tuple, bool))}
config.update({'env-' + k: v for (k, v) in vars(rl_training_config.env).items() if isinstance(v, (float, int, str, list, dict, tuple, bool))})
config.update({'tds-' + k: v for (k, v) in vars(rl_training_config.env.simulator).items() if isinstance(v, (float, int, str, list, dict, tuple, bool))})
experiment_name = f"{rl_training_config.algorithm}_{int(time.time())}"
# Create training environment
env = make_env_(rl_training_config.env)
# Initialize model (A2C in this case)
model = A2C("TransformerPolicy", env, verbose=1, n_steps=int(256 / rl_training_config.parallel_env_num), gae_lambda=0.95, ent_coef=0.01)
# Initialize evaluation callbacks for validation and training environments
eval_val_env = make_env_(rl_training_config.env)
eval_val_callback = EvalNTimestepsCallback(eval_val_env, n_steps=rl_training_config.eval_val_callback['n_steps'],
eval_n_episodes=rl_training_config.eval_val_callback['eval_n_episodes'],
deterministic=rl_training_config.eval_val_callback['deterministic'], log_tab="eval_val")
eval_train_env = make_env_(rl_training_config.env)
eval_train_callback = EvalNTimestepsCallback(eval_train_env, n_steps=rl_training_config.eval_train_callback['n_steps'],
eval_n_episodes=rl_training_config.eval_train_callback['eval_n_episodes'],
deterministic=rl_training_config.eval_train_callback['deterministic'], log_tab="eval_train")
# Run training loop
vec_env = model.get_env()
obs = vec_env.reset()
# maintain a running average of past n rewards
# to check if the model is learning
reward_list = []
model.learn(total_timesteps=args.iterations)
# # Example loop for obtaining relative positions and actions during training
# for i in range(args.iterations):
# relative_positions = vec_env.envs[0].simulator.get_all_agents_relative(exclude_self=True)
# # get it into the shape to feed the transformer
# relative_positions = relative_positions.squeeze(0)
# action, _state = model.predict(relative_positions, deterministic=True)
# obs, reward, done, info = vec_env.step(action)
# reward_list.append(reward)
# if i% 1000 == 0:
# if len(reward_list) > 1000:
# print(f"Mean reward over last 1000 steps: {np.mean(reward_list[-1000:])}")
# reward_list = reward_list[-100:]
# else:
# print(f"Mean reward over last {len(reward_list)} steps: {np.mean(reward_list)}")