-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecurrent-visual-attention.lua
310 lines (263 loc) · 10.4 KB
/
recurrent-visual-attention.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
require 'dp'
require 'rnn'
require 'cutorch'
dofile 'SpatialGlimpse1D.lua'
dofile 'MultiVRReward.lua'
dofile 'ReinforceGamma.lua'
-- References :
-- A. http://papers.nips.cc/paper/5542-recurrent-models-of-visual-attention.pdf
-- B. http://incompleteideas.net/sutton/williams-92.pdf
version = 12
--[[command line arguments]]--
cmd = torch.CmdLine()
cmd:text()
cmd:text('Train a Recurrent Model for Visual Attention')
cmd:text('Example:')
cmd:text('$> th rnn-visual-attention.lua > results.txt')
cmd:text('Options:')
cmd:option('--learningRate', 0.01, 'learning rate at t=0')
cmd:option('--minLR', 0.00001, 'minimum learning rate')
cmd:option('--saturateEpoch', 800, 'epoch at which linear decayed LR will reach minLR')
cmd:option('--momentum', 0.9, 'momentum')
cmd:option('--maxOutNorm', -1, 'max norm each layers output neuron weights')
cmd:option('--cutoffNorm', -1, 'max l2-norm of contatenation of all gradParam tensors')
cmd:option('--batchSize', 20, 'number of examples per batch')
cmd:option('--cuda', true, 'use CUDA')
cmd:option('--useDevice', 1, 'sets the device (GPU) to use')
cmd:option('--maxEpoch', 2000, 'maximum number of epochs to run')
cmd:option('--maxTries', 100, 'maximum number of epochs to try to find a better local minima for early-stopping')
cmd:option('--transfer', 'ReLU', 'activation function')
cmd:option('--uniform', 0.1, 'initialize parameters using uniform distribution between -uniform and uniform. -1 means default initialization')
cmd:option('--xpPath', '', 'path to a previously saved model')
cmd:option('--progress', false, 'print progress bar')
cmd:option('--silent', false, 'dont print anything to stdout')
--[[ reinforce ]]--
cmd:option('--rewardScale', 0.25, "scale of positive reward (negative is 0)")
cmd:option('--unitPixels', 405, "the locator unit (1,1) maps to pixels (13,13), or (-1,-1) maps to (-13,-13)")
cmd:option('--locatorStd', 15, 'stdev of gaussian location sampler (between 0 and 1) (low values may cause NaNs)')
cmd:option('--stochastic', false, 'Reinforce modules forward inputs stochastically during evaluation')
--[[ glimpse layer ]]--
cmd:option('--glimpseHiddenSize', 128, 'size of glimpse hidden layer')
cmd:option('--glimpsePatchSize', {2,180}, 'size of glimpse patch at highest res {height, width}')
cmd:option('--glimpseScale', 2, 'scale of successive patches w.r.t. original input image')
cmd:option('--glimpseDepth', 2, 'number of concatenated downscaled patches')
cmd:option('--locatorHiddenSize', 128, 'size of locator hidden layer')
cmd:option('--imageHiddenSize', 256, 'size of hidden layer combining glimpse and locator hiddens')
--[[ recurrent layer ]]--
cmd:option('--rho', 4, 'back-propagate through time (BPTT) for rho time-steps')
cmd:option('--hiddenSize', 64, 'number of hidden units used in Simple RNN.')
cmd:option('--FastLSTM', false, 'use LSTM instead of linear layer')
--[[ data ]]--
cmd:option('--dataset', 'MIT-BIH', 'which dataset to use : Mnist | TranslattedMnist | etc')
cmd:option('--trainEpochSize', -1, 'number of train examples seen between each epoch')
cmd:option('--validEpochSize', -1, 'number of valid examples used for early stopping and cross-validation')
cmd:option('--noTest', false, 'dont propagate through the test set')
cmd:option('--overwrite', false, 'overwrite checkpoint')
cmd:text()
local opt = cmd:parse(arg or {})
if not opt.silent then
table.print(opt)
end
if opt.xpPath ~= '' then
-- check that saved model exists
assert(paths.filep(opt.xpPath), opt.xpPath..' does not exist')
end
--[[data]]--
if opt.dataset == 'TranslatedMnist' then
ds = torch.checkpoint(
paths.concat(dp.DATA_DIR, 'checkpoint/dp.TranslatedMnist.t7'),
function() return dp[opt.dataset]() end,
opt.overwrite
)
else
ds = torch.load('Len'..opt.rho)
end
--[[Saved experiment]]--
if opt.xpPath ~= '' then
if opt.cuda then
require 'optim'
require 'cunn'
cutorch.setDevice(opt.useDevice)
end
xp = torch.load(opt.xpPath)
if opt.cuda then
xp:cuda()
else
xp:float()
end
print"running"
xp:run(ds)
os.exit()
end
--[[Model]]--
glimpseAxes = 1
-- glimpse network (rnn input layer)
locationSensor = nn.Sequential()
locationSensor:add(nn.SelectTable(2))
locationSensor:add(nn.Linear(glimpseAxes, opt.locatorHiddenSize))
locationSensor:add(nn[opt.transfer]())
glimpseSensor = nn.Sequential()
glimpseSensor:add(nn.DontCast(nn.SpatialGlimpse1D(opt.glimpsePatchSize, opt.glimpseDepth, opt.glimpseScale),true))
glimpseSensor:add(nn.Collapse(3))
glimpseSensor:add(nn.Linear(ds:imageSize('c')*(opt.glimpsePatchSize[1]*opt.glimpsePatchSize[2])*opt.glimpseDepth, opt.glimpseHiddenSize))
glimpseSensor:add(nn[opt.transfer]())
glimpse = nn.Sequential()
glimpse:add(nn.ConcatTable():add(locationSensor):add(glimpseSensor))
glimpse:add(nn.JoinTable(1,1))
glimpse:add(nn.Linear(opt.glimpseHiddenSize+opt.locatorHiddenSize, opt.imageHiddenSize))
glimpse:add(nn[opt.transfer]())
glimpse:add(nn.Linear(opt.imageHiddenSize, opt.hiddenSize))
-- rnn recurrent layer
if opt.FastLSTM then
recurrent = nn.FastLSTM(opt.hiddenSize, opt.hiddenSize)
else
recurrent = nn.Linear(opt.hiddenSize, opt.hiddenSize)
end
-- recurrent neural network
rnn = nn.Recurrent(opt.hiddenSize, glimpse, recurrent, nn[opt.transfer](), opt.rho)
-- actions (locator)
locator = nn.Sequential()
locator:add(nn.Linear(opt.hiddenSize, glimpseAxes))
locator:add(nn.Sigmoid())
-- transform mean and stdev to {shape,scale} params of gamma dist
-- mu^2 sigma^2
-- shape = ------- scale = -------
-- sigma^2 mu
transform = nn.Sequential()
transform:add( nn.MulConstant(386-47,true) )
transform:add( nn.AddConstant(47,true) )
var = nn.Sequential()
var:add(nn.Constant(15,1))
var:add(nn.Power(2))
transform:add( nn.ConcatTable():add(nn.Power(2)):add(var):add(nn.Identity()) )
transform:add( nn.ConcatTable():add( nn.NarrowTable(1,2) ):add( nn.NarrowTable(2,2) ) )
transform:add( nn.ParallelTable():add( nn.CDivTable() ):add(nn.CDivTable() ) )
transform:add( nn.ReinforceGamma() )
locator:add( nn.Recurrent( glimpseAxes, transform, nn.Identity(), nn.Identity()) )
locator.modules[1].bias = torch.zeros(glimpseAxes)
locator:add(nn.AddConstant(-1*opt.unitPixels,true))
locator:add(nn.MulConstant(1/opt.unitPixels,true))
locator:add(nn.HardTanh()) -- bounds sample between -1 and 1
locator:add(nn.MulConstant(opt.unitPixels*2/ds:imageSize("w")))
attention = nn.RecurrentAttention(rnn, locator, opt.rho, {opt.hiddenSize})
-- model is a reinforcement learning agent
agent = nn.Sequential()
agent:add(nn.Convert(ds:ioShapes(), 'bchw'))
agent:add(attention)
-- classifier :
-- agent:add(nn.SelectTable(-1))
-- output should be a table of 1796 actions, and we want to apply a linear layer and a softmax to each one
classifier = nn.Sequential()
classifier:add(nn.Linear(opt.hiddenSize, #ds:classes()))
classifier:add(nn.LogSoftMax())
-- we don't want to train 1796 linear layers, so have them all share weights
--multipleActions = nn.ParallelTable()
--for i=1,opt.rho do
-- multipleActions:add( classifier:clone('weight','bias','gradWeight','gradBias') )
--end
--agent:add( multipleActions )
agent:add( nn.Sequencer( classifier ) )
agent:add( nn.JoinTable(2,2) )
agent:add( nn.View(-1,opt.rho,#ds:classes()) )
-- add the baseline reward predictor
seq = nn.Sequential()
seq:add(nn.Constant(torch.Tensor(opt.rho,1):fill(1),2))
bias = nn.Sequential()
bias:add(nn.SplitTable(1,2))
temp = nn.ParallelTable()
for i=1,opt.rho do
temp:add(nn.Add(1))
end
bias:add(temp)
bias:add(nn.JoinTable(2,2))
bias:add(nn.View(-1,opt.rho,1))
seq:add(bias)
--seq:add(nn.Add(4))
concat = nn.ConcatTable():add(nn.Identity()):add(seq)
concat2 = nn.ConcatTable():add(nn.Identity()):add(concat)
-- output will be : {classpred, {classpred, basereward}}
agent:add(concat2)
if opt.uniform > 0 then
for k,param in ipairs(agent:parameters()) do
param:uniform(-opt.uniform, opt.uniform)
end
end
--[[Propagators]]--
opt.decayFactor = (opt.minLR - opt.learningRate)/opt.saturateEpoch
-- not sure how to backprop multiple actions to the same network...but this is my best guess.
--backprop = nn.ParallelCriterion()
--for i=1,opt.rho do
-- backprop:add( nn.ClassNLLCriterion())
--end
ugh = nn.Sequential()
ugh:add(nn.View(1))
ugh:add(nn.Squeeze())
train = dp.Optimizer{
-- split up each action into elements of a table, and split up each target into elements of a table, and apply ClassNLLCriterion to each
-- pair of elements
loss = nn.ParallelCriterion(true)
:add(nn.ModuleCriterion(nn.SequencerCriterion(nn.ClassNLLCriterion(torch.Tensor{.01,.99})), nn.SplitTable(1,2), nn.SplitTable(1,1))) -- BACKPROP
:add(nn.ModuleCriterion(nn.MultiVRReward(agent, opt.rewardScale), nil, nn.Convert())) -- REINFORCE
,
epoch_callback = function(model, report) -- called every epoch
if report.epoch > 0 then
opt.learningRate = opt.learningRate + opt.decayFactor
opt.learningRate = math.max(opt.minLR, opt.learningRate)
if not opt.silent then
print("learningRate", opt.learningRate)
end
end
end,
callback = function(model, report)
if opt.cutoffNorm > 0 then
local norm = model:gradParamClip(opt.cutoffNorm) -- affects gradParams
opt.meanNorm = opt.meanNorm and (opt.meanNorm*0.9 + norm*0.1) or norm
if opt.lastEpoch < report.epoch and not opt.silent then
print("mean gradParam norm", opt.meanNorm)
end
end
model:updateGradParameters(opt.momentum) -- affects gradParams
model:updateParameters(opt.learningRate) -- affects params
model:maxParamNorm(opt.maxOutNorm) -- affects params
model:zeroGradParameters() -- affects gradParams
end,
feedback = nil,
sampler = dp.ShuffleSampler{
epoch_size = opt.trainEpochSize, batch_size = opt.batchSize
},
progress = opt.progress
}
valid = dp.Evaluator{
feedback = nil,
sampler = dp.Sampler{epoch_size = opt.validEpochSize, batch_size = opt.batchSize},
progress = opt.progress
}
if not opt.noTest then
tester = dp.Evaluator{
feedback = nil,
sampler = dp.Sampler{batch_size = opt.batchSize}
}
end
--[[Experiment]]--
xp = dp.Experiment{
model = agent,
optimizer = train,
validator = valid,
tester = tester,
random_seed = os.time(),
max_epoch = opt.maxEpoch
}
--[[GPU or CPU]]--
if opt.cuda then
require 'cutorch'
require 'cunn'
cutorch.setDevice(opt.useDevice)
xp:cuda()
end
xp:verbose(not opt.silent)
if not opt.silent then
print"Agent :"
print(agent)
end
xp.opt = opt
xp:run(ds)