-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen_test.py
executable file
·44 lines (40 loc) · 1.57 KB
/
gen_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#!/usr/bin/python3
import numpy as np
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-s', '--num_samples', nargs='?', required=True,
help='number of samples', type=int)
parser.add_argument('-c', '--num_clusters', nargs='?', required=True,
help='number of clusters', type=int)
parser.add_argument('-f', '--num_features', nargs='?', required=True,
help='number of features', type=int)
parser.add_argument('-o', '--outfile', nargs='?', required=True,
help='file to output', type=str)
parser.add_argument('--offset', nargs='?', default=0, help='mean to offset by',
type=float)
parser.add_argument('--scale', nargs='?', default=10, help='amount to scale by',
type=float)
args = parser.parse_args()
tst_data = np.random.randn(args.num_samples,args.num_features)
tst_data = tst_data*args.scale + args.offset
with open(args.outfile,'w') as f:
for i,x in enumerate(tst_data.tolist()):
f.write(str(i+1)+" ")
n_features = len(x)
for j in range(n_features):
f.write(str(x[j]))
if(j != n_features-1):
f.write(" ")
f.write("\n")
selected_indices = np.arange(args.num_samples)
np.random.shuffle(selected_indices)
with open(args.outfile+'.initcentroids','w') as f:
for i,x in \
enumerate(tst_data[selected_indices[:args.num_clusters]].tolist()):
f.write(str(i+1)+" ")
n_features = len(x)
for j in range(n_features):
f.write(str(x[j]))
if(j != n_features-1):
f.write(" ")
f.write("\n")