-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
155 lines (124 loc) · 4.92 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
'''
Samuel Remedios
NIH CC CNRM
Train PhiNet to classify MRI modalities
'''
import os
import json
from keras.callbacks import ModelCheckpoint, TensorBoard, ReduceLROnPlateau, EarlyStopping
from keras import backend as K
from keras.models import model_from_json
from models.phinet import phinet, phinet_2D
from models.multi_gpu import ModelMGPU
from utils.nifti_image import NIfTIImageDataGenerator
from utils.augmentations import *
from utils.utils import parse_args, now
os.environ['FSLOUTPUTTYPE'] = 'NIFTI_GZ'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
if __name__ == '__main__':
############### DIRECTORIES ###############
results = parse_args("train")
NUM_GPUS = 1
if results.GPUID == None:
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
elif results.GPUID == -1:
NUM_GPUS = 3
else:
os.environ["CUDA_VISIBLE_DEVICES"] = str(results.GPUID)
TRAIN_DIR = os.path.abspath(os.path.expanduser(results.TRAIN_DIR))
VAL_DIR = os.path.abspath(os.path.expanduser(results.VAL_DIR))
classes = results.classes.replace(" ", "").split(',')
WEIGHT_DIR = os.path.abspath(os.path.expanduser(results.OUT_DIR))
MODEL_NAME = "phinet_model_" + "-".join(classes)
MODEL_PATH = os.path.join(WEIGHT_DIR, MODEL_NAME+".json")
SAMPLE_AUG_PATH = os.path.join("data", "augmented_slices")
AUG_FILE_PREFIX = "augmented_file"
for d in [WEIGHT_DIR, SAMPLE_AUG_PATH]:
if not os.path.exists(d):
os.makedirs(d)
patch_size = (45, 45)
num_patches = 100
############### MODEL SELECTION ###############
'''
if results.model:
with open(results.model) as json_data:
model = model_from_json(json.load(json_data))
model.load_weights(results.weights)
'''
LR = 1e-5
if len(patch_size) == 2:
model = phinet_2D(model_path=MODEL_PATH,
n_classes=len(classes),
learning_rate=LR,
num_channels=1,
num_gpus=NUM_GPUS,
verbose=0,)
elif len(patch_size) == 3:
model = phinet(model_path=MODEL_PATH,
n_classes=len(classes),
learning_rate=LR,
num_channels=1,
num_gpus=NUM_GPUS,
verbose=0,)
if results.weights:
model.load_weights(results.weights)
############### DATA IMPORT ###############
# augmentations occur in the order they appear
train_augmentations = {
rotate_3D: {"max_angle": 30,
"direction_length": 3},
get_patch_2D: {"patch_size": patch_size,
"num_patches": num_patches,
"transpose_chance": 0.5},
}
val_augmentations = {
get_patch_2D: {"patch_size": patch_size,
"num_patches": num_patches,
"transpose_chance": 0},
}
num_files = 2087
num_val_files = 600
batch_size = 16
params = {
# 'target_size': (256, 256, 256),
'target_size': patch_size,
'batch_size': batch_size,
'class_mode': 'categorical',
'num_patches': num_patches,
# 'axial_slice': 2,
#'save_to_dir': SAMPLE_AUG_PATH,
#'save_prefix': AUG_FILE_PREFIX,
}
train_params = {'augmentations': train_augmentations}
val_params = {'augmentations': val_augmentations}
train_datagen = NIfTIImageDataGenerator()
test_datagen = NIfTIImageDataGenerator()
train_generator = train_datagen.flow_from_directory(
TRAIN_DIR, **params, **train_params)
validation_generator = test_datagen.flow_from_directory(
VAL_DIR, **params, **val_params)
############### CALLBACKS ###############
callbacks_list = []
# Checkpoint
WEIGHT_NAME = MODEL_NAME.replace("model", "weights") + "_" +\
now()+"-epoch-{epoch:04d}-val_acc-{val_acc:.4f}.hdf5"
fpath = os.path.join(WEIGHT_DIR, WEIGHT_NAME)
checkpoint = ModelCheckpoint(fpath,
monitor='val_acc',
verbose=1,
save_best_only=True,
mode='max',
save_weights_only=True)
callbacks_list.append(checkpoint)
# Early Stopping, used to quantify convergence
es = EarlyStopping(monitor='val_acc', min_delta=1e-4, patience=20)
callbacks_list.append(es)
############### TRAINING ###############
model.fit_generator(train_generator,
validation_data=validation_generator,
steps_per_epoch=num_files//batch_size, # total number of images
epochs=100000,
validation_steps=num_val_files//batch_size, # total number val images
callbacks=callbacks_list)
# TODO: ensure that the classes learned can be predicted upon
K.clear_session()