-
Notifications
You must be signed in to change notification settings - Fork 2
/
lipsum.py
787 lines (675 loc) · 30.9 KB
/
lipsum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
# stripped down by Senthil Palanisami (Sen) [[email protected]] to
# work on Google App Engine and exist as a single file
# use as described in http://code.google.com/p/lorem-ipsum-generator/wiki/ApiOverview
# pulled from trunk http://code.google.com/p/lorem-ipsum-generator/ on Monday April 2, 2012
# Copyright (c) James Hales and individual contributors.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# 3. The name of contributors may not be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import math
import random
import re
# Delimiters that mark ends of sentences
_DELIMITERS_SENTENCES = ['.', '?', '!']
# Delimiters which do not form parts of words (i.e. "hello," is the word
# "hello" with a comma next to it)
_DELIMITERS_WORDS = [','] + _DELIMITERS_SENTENCES
_NEWLINE = "\n"
_DEFAULT_SAMPLE = """Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim. Donec pede justo, fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae, justo. Nullam dictum felis eu pede mollis pretium. Integer tincidunt. Cras dapibus. Vivamus elementum semper nisi. Aenean vulputate eleifend tellus. Aenean leo ligula, porttitor eu, consequat vitae, eleifend ac, enim. Aliquam lorem ante, dapibus in, viverra quis, feugiat a, tellus. Phasellus viverra nulla ut metus varius laoreet. Quisque rutrum. Aenean imperdiet. Etiam ultricies nisi vel augue. Curabitur ullamcorper ultricies nisi. Nam eget dui.
Etiam rhoncus. Maecenas tempus, tellus eget condimentum rhoncus, sem quam semper libero, sit amet adipiscing sem neque sed ipsum. Nam quam nunc, blandit vel, luctus pulvinar, hendrerit id, lorem. Maecenas nec odio et ante tincidunt tempus. Donec vitae sapien ut libero venenatis faucibus. Nullam quis ante. Etiam sit amet orci eget eros faucibus tincidunt. Duis leo. Sed fringilla mauris sit amet nibh. Donec sodales sagittis magna. Sed consequat, leo eget bibendum sodales, augue velit cursus nunc, quis gravida magna mi a libero. Fusce vulputate eleifend sapien. Vestibulum purus quam, scelerisque ut, mollis sed, nonummy id, metus. Nullam accumsan lorem in dui. Cras ultricies mi eu turpis hendrerit fringilla. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; In ac dui quis mi consectetuer lacinia.
Nam pretium turpis et arcu. Duis arcu tortor, suscipit eget, imperdiet nec, imperdiet iaculis, ipsum. Sed aliquam ultrices mauris. Integer ante arcu, accumsan a, consectetuer eget, posuere ut, mauris. Praesent adipiscing. Phasellus ullamcorper ipsum rutrum nunc. Nunc nonummy metus. Vestibulum volutpat pretium libero. Cras id dui. Aenean ut eros et nisl sagittis vestibulum. Nullam nulla eros, ultricies sit amet, nonummy id, imperdiet feugiat, pede. Sed lectus. Donec mollis hendrerit risus. Phasellus nec sem in justo pellentesque facilisis. Etiam imperdiet imperdiet orci. Nunc nec neque. Phasellus leo dolor, tempus non, auctor et, hendrerit quis, nisi.
Curabitur ligula sapien, tincidunt non, euismod vitae, posuere imperdiet, leo. Maecenas malesuada. Praesent congue erat at massa. Sed cursus turpis vitae tortor. Donec posuere vulputate arcu. Phasellus accumsan cursus velit. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Sed aliquam, nisi quis porttitor congue, elit erat euismod orci, ac placerat dolor lectus quis orci. Phasellus consectetuer vestibulum elit. Aenean tellus metus, bibendum sed, posuere ac, mattis non, nunc. Vestibulum fringilla pede sit amet augue. In turpis. Pellentesque posuere. Praesent turpis.
Aenean posuere, tortor sed cursus feugiat, nunc augue blandit nunc, eu sollicitudin urna dolor sagittis lacus. Donec elit libero, sodales nec, volutpat a, suscipit non, turpis. Nullam sagittis. Suspendisse pulvinar, augue ac venenatis condimentum, sem libero volutpat nibh, nec pellentesque velit pede quis nunc. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Fusce id purus. Ut varius tincidunt libero. Phasellus dolor. Maecenas vestibulum mollis diam. Pellentesque ut neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.
In dui magna, posuere eget, vestibulum et, tempor auctor, justo. In ac felis quis tortor malesuada pretium. Pellentesque auctor neque nec urna. Proin sapien ipsum, porta a, auctor quis, euismod ut, mi. Aenean viverra rhoncus pede. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Ut non enim eleifend felis pretium feugiat. Vivamus quis mi. Phasellus a est. Phasellus magna.
In hac habitasse platea dictumst. Curabitur at lacus ac velit ornare lobortis. Curabitur a felis in nunc fringilla tristique. Morbi mattis ullamcorper velit. Phasellus gravida semper nisi. Nullam vel sem. Pellentesque libero tortor, tincidunt et, tincidunt eget, semper nec, quam. Sed hendrerit. Morbi ac felis. Nunc egestas, augue at pellentesque laoreet, felis eros vehicula leo, at malesuada velit leo quis pede. Donec interdum, metus et hendrerit aliquet, dolor diam sagittis ligula, eget egestas libero turpis vel mi. Nunc nulla. Fusce risus nisl, viverra et, tempor et, pretium in, sapien. Donec venenatis vulputate lorem.
Morbi nec metus. Phasellus blandit leo ut odio. Maecenas ullamcorper, dui et placerat feugiat, eros pede varius nisi, condimentum viverra felis nunc et lorem. Sed magna purus, fermentum eu, tincidunt eu, varius ut, felis. In auctor lobortis lacus. Quisque libero metus, condimentum nec, tempor a, commodo mollis, magna. Vestibulum ullamcorper mauris at ligula. Fusce fermentum. Nullam cursus lacinia erat. Praesent blandit laoreet nibh.
Fusce convallis metus id felis luctus adipiscing. Pellentesque egestas, neque sit amet convallis pulvinar, justo nulla eleifend augue, ac auctor orci leo non est. Quisque id mi. Ut tincidunt tincidunt erat. Etiam feugiat lorem non metus. Vestibulum dapibus nunc ac augue. Curabitur vestibulum aliquam leo. Praesent egestas neque eu enim. In hac habitasse platea dictumst. Fusce a quam. Etiam ut purus mattis mauris sodales aliquam. Curabitur nisi. Quisque malesuada placerat nisl. Nam ipsum risus, rutrum vitae, vestibulum eu, molestie vel, lacus.
Sed augue ipsum, egestas nec, vestibulum et, malesuada adipiscing, dui. Vestibulum facilisis, purus nec pulvinar iaculis, ligula mi congue nunc, vitae euismod ligula urna in dolor. Mauris sollicitudin fermentum libero. Praesent nonummy mi in odio. Nunc interdum lacus sit amet orci. Vestibulum rutrum, mi nec elementum vehicula, eros quam gravida nisl, id fringilla neque ante vel mi. Morbi mollis tellus ac sapien. Phasellus volutpat, metus eget egestas mollis, lacus lacus blandit dui, id egestas quam mauris ut lacus. Fusce vel dui. Sed in libero ut nibh placerat accumsan. Proin faucibus arcu quis ante. In consectetuer turpis ut velit. Nulla sit amet est. Praesent metus tellus, elementum eu, semper a, adipiscing nec, purus. Cras risus ipsum, faucibus ut, ullamcorper id, varius ac, leo. Suspendisse feugiat. Suspendisse enim turpis, dictum sed, iaculis a, condimentum nec, nisi. Praesent nec nisl a purus blandit viverra. Praesent ac massa at ligula laoreet iaculis. Nulla neque dolor, sagittis eget, iaculis quis, molestie non, velit.
Mauris turpis nunc, blandit et, volutpat molestie, porta ut, ligula. Fusce pharetra convallis urna. Quisque ut nisi. Donec mi odio, faucibus at, scelerisque quis, convallis in, nisi. Suspendisse non nisl sit amet velit hendrerit rutrum. Ut leo. Ut a nisl id ante tempus hendrerit. Proin pretium, leo ac pellentesque mollis, felis nunc ultrices eros, sed gravida augue augue mollis justo. Suspendisse eu ligula. Nulla facilisi. Donec id justo. Praesent porttitor, nulla vitae posuere iaculis, arcu nisl dignissim dolor, a pretium mi sem ut ipsum. Curabitur suscipit suscipit tellus.
Praesent vestibulum dapibus nibh. Etiam iaculis nunc ac metus. Ut id nisl quis enim dignissim sagittis. Etiam sollicitudin, ipsum eu pulvinar rutrum, tellus ipsum laoreet sapien, quis venenatis ante odio sit amet eros. Proin magna. Duis vel nibh at velit scelerisque suscipit. Curabitur turpis. Vestibulum suscipit nulla quis orci. Fusce ac felis sit amet ligula pharetra condimentum. Maecenas egestas arcu quis ligula mattis placerat. Duis lobortis massa imperdiet quam. Suspendisse potenti.
Pellentesque commodo eros a enim. Vestibulum turpis sem, aliquet eget, lobortis pellentesque, rutrum eu, nisl. Sed libero. Aliquam erat volutpat. Etiam vitae tortor. Morbi vestibulum volutpat enim. Aliquam eu nunc. Nunc sed turpis. Sed mollis, eros et ultrices tempus, mauris ipsum aliquam libero, non adipiscing dolor urna a orci. Nulla porta dolor. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos.
Pellentesque dapibus hendrerit tortor. Praesent egestas tristique nibh. Sed a libero. Cras varius. Donec vitae orci sed dolor rutrum auctor. Fusce egestas elit eget lorem. Suspendisse nisl elit, rhoncus eget, elementum ac, condimentum eget, diam. Nam at tortor in tellus interdum sagittis. Aliquam lobortis. Donec orci lectus, aliquam ut, faucibus non, euismod id, nulla. Curabitur blandit mollis lacus. Nam adipiscing. Vestibulum eu odio.
Vivamus laoreet. Nullam tincidunt adipiscing enim. Phasellus tempus. Proin viverra, ligula sit amet ultrices semper, ligula arcu tristique sapien, a accumsan nisi mauris ac eros. Fusce neque. Suspendisse faucibus, nunc et pellentesque egestas, lacus ante convallis tellus, vitae iaculis lacus elit id tortor. Vivamus aliquet elit ac nisl. Fusce fermentum odio nec arcu. Vivamus euismod mauris. In ut quam vitae odio lacinia tincidunt. Praesent ut ligula non mi varius sagittis. Cras sagittis. Praesent ac sem eget est egestas volutpat. Vivamus consectetuer hendrerit lacus. Cras non dolor. Vivamus in erat ut urna cursus vestibulum. Fusce commodo aliquam arcu. Nam commodo suscipit quam. Quisque id odio. Praesent venenatis metus at tortor pulvinar varius.
"""
_DEFAULT_DICT = """a
ac
accumsan
ad
adipiscing
aenean
aliquam
aliquet
amet
ante
aptent
arcu
at
auctor
augue
bibendum
blandit
class
commodo
condimentum
congue
consectetuer
consequat
conubia
convallis
cras
cubilia
cum
curabitur
curae
cursus
dapibus
diam
dictum
dictumst
dignissim
dis
dolor
donec
dui
duis
egestas
eget
eleifend
elementum
elit
eni
enim
erat
eros
est
et
etiam
eu
euismod
facilisi
facilisis
fames
faucibus
felis
fermentum
feugiat
fringilla
fusce
gravida
habitant
habitasse
hac
hendrerit
hymenaeos
iaculis
id
imperdiet
in
inceptos
integer
interdum
ipsum
justo
lacinia
lacus
laoreet
lectus
leo
libero
ligula
litora
lobortis
lorem
luctus
maecenas
magna
magnis
malesuada
massa
mattis
mauris
metus
mi
molestie
mollis
montes
morbi
mus
nam
nascetur
natoque
nec
neque
netus
nibh
nisi
nisl
non
nonummy
nostra
nulla
nullam
nunc
odio
orci
ornare
parturient
pede
pellentesque
penatibus
per
pharetra
phasellus
placerat
platea
porta
porttitor
posuere
potenti
praesent
pretium
primis
proin
pulvinar
purus
quam
quis
quisque
rhoncus
ridiculus
risus
rutrum
sagittis
sapien
scelerisque
sed
sem
semper
senectus
sit
sociis
sociosqu
sodales
sollicitudin
suscipit
suspendisse
taciti
tellus
tempor
tempus
tincidunt
torquent
tortor
tristique
turpis
ullamcorper
ultrices
ultricies
urna
ut
varius
ve
vehicula
vel
velit
venenatis
vestibulum
vitae
vivamus
viverra
volutpat
vulputate""".split("\n")
def _split_paragraphs(text):
"""
Splits a piece of text into paragraphs, separated by empty lines.
"""
lines = text.splitlines()
paragraphs = [[]]
for line in lines:
if len(line.strip()) > 0:
paragraphs[-1] += [line]
elif len(paragraphs[-1]) > 0:
paragraphs.append([])
paragraphs = map(' '.join, paragraphs)
paragraphs = map(str.strip, paragraphs)
paragraphs = filter(lambda s : s != '', paragraphs)
return paragraphs
def _split_sentences(text):
"""
Splits a piece of text into sentences, separated by periods, question
marks and exclamation marks.
"""
sentence_split = ''
for delimiter in _DELIMITERS_SENTENCES:
sentence_split += '\\' + delimiter
sentence_split = '[' + sentence_split + ']'
sentences = re.split(sentence_split, text.strip())
sentences = map(str.strip, sentences)
sentences = filter(lambda s : s != '', sentences)
return sentences
def _split_words(text):
"""
Splits a piece of text into words, separated by whitespace.
"""
return text.split()
def _mean(values):
return sum(values) / float(max(len(values), 1))
def _variance(values):
squared = map(lambda x : x**2, values)
return _mean(squared) - _mean(values)**2
def _sigma(values):
return math.sqrt(_variance(values))
def _choose_closest(values, target):
"""
Find the number in the list of values that is closest to the target.
Prefer the first in the list.
"""
closest = values[0]
for value in values:
if abs(target - value) < abs(target - closest):
closest = value
return closest
def _get_word_info(word):
longest = (word, "")
for delimiter in _DELIMITERS_WORDS:
if len(delimiter) > len(longest[1]) and word.endswith(delimiter):
word = word.rpartition(delimiter)
longest = (word[0], word[1])
return (len(longest[0]), longest[1])
class InvalidDictionaryError(Exception):
def __str__(self):
return ('The dictionary must be a list of one or more words.')
class InvalidSampleError(Exception):
def __str__(self):
return ('The sample text must contain one or more empty-line '
'delimited paragraphs, and each paragraph must contain one or '
'more period, question mark, or exclamation mark delimited '
'sentences.')
class Generator(object):
"""
Generates random strings of "lorem ipsum" text.
Markov chains are used to generate the random text based on the analysis
of a sample text. In the analysis, only paragraph, sentence and word
lengths, and some basic punctuation matter -- the actual words are
ignored. A provided list of words is then used to generate the random text,
so that it will have a similar distribution of paragraph, sentence and word
lengths.
"""
# Words that can be used in the generated output
# Maps a word-length to a list of words of that length
__words = {}
# Chains of three words that appear in the sample text
# Maps a pair of word-lengths to a third word-length and an optional
# piece of trailing punctuation (for example, a period, comma, etc.)
__chains = {}
# Pairs of word-lengths that can appear at the beginning of sentences
__starts = []
# Sample that the generated text is based on
__sample = ""
# Statistics for sentence and paragraph generation
__sentence_mean = 0
__sentence_sigma = 0
__paragraph_mean = 0
__paragraph_sigma = 0
# Last calculated statistics, in case they are overwritten by user
__generated_sentence_mean = 0
__generated_sentence_sigma = 0
__generated_paragraph_mean = 0
__generated_paragraph_sigma = 0
def __init__(self, sample=_DEFAULT_SAMPLE, dictionary=_DEFAULT_DICT):
"""
Initialises a generator that will use the provided sample text and
dictionary to produce sentences.
"""
self.sample = sample
self.dictionary = dictionary
def __set_sentence_mean(self, mean):
if mean < 0:
raise ValueError('Mean sentence length must be non-negative.')
self.__sentence_mean = mean
def __set_sentence_sigma(self, sigma):
if sigma < 0:
raise ValueError('Standard deviation of sentence length must be '
'non-negative.')
self.__sentence_sigma = sigma
def __set_paragraph_mean(self, mean):
if mean < 0:
raise ValueError('Mean paragraph length must be non-negative.')
self.__paragraph_mean = mean
def __set_paragraph_sigma(self, sigma):
if sigma < 0:
raise ValueError('Standard deviation of paragraph length must be '
'non-negative.')
self.__paragraph_sigma = sigma
def __get_sentence_mean(self):
"""
A non-negative value determining the mean sentence length (in words)
of generated sentences. Is changed to match the sample text when the
sample text is updated.
"""
return self.__sentence_mean
def __get_sentence_sigma(self):
"""
A non-negative value determining the standard deviation of sentence
lengths (in words) of generated sentences. Is changed to match the
sample text when the sample text is updated.
"""
return self.__sentence_sigma
def __get_paragraph_mean(self):
"""
A non-negative value determining the mean paragraph length (in
sentences) of generated sentences. Is changed to match the sample text
when the sample text is updated.
"""
return self.__paragraph_mean
def __get_paragraph_sigma(self):
"""
A non-negative value determining the standard deviation of paragraph
lengths (in sentences) of generated sentences. Is changed to match the
sample text when the sample text is updated.
"""
return self.__paragraph_sigma
sentence_mean = property(__get_sentence_mean, __set_sentence_mean)
sentence_sigma = property(__get_sentence_sigma, __set_sentence_sigma)
paragraph_mean = property(__get_paragraph_mean, __set_paragraph_mean)
paragraph_sigma = property(__get_paragraph_sigma, __set_paragraph_sigma)
def __generate_chains(self, sample):
"""
Generates the __chains and __starts values required for sentence generation.
"""
words = _split_words(sample)
if len(words) <= 0:
raise InvalidSampleError
word_info = map(_get_word_info, words)
previous = (0, 0)
chains = {}
starts = [previous]
for pair in word_info:
if pair[0] == 0:
continue
chains.setdefault(previous, []).append(pair)
if pair[1] in _DELIMITERS_SENTENCES:
starts.append(previous)
previous = (previous[1], pair[0])
if len(chains) > 0:
self.__chains = chains
self.__starts = starts
else:
raise InvalidSampleError
def __generate_statistics(self, sample):
"""
Calculates the mean and standard deviation of sentence and paragraph lengths.
"""
self.__generate_sentence_statistics(sample)
self.__generate_paragraph_statistics(sample)
self.reset_statistics()
def __generate_sentence_statistics(self, sample):
"""
Calculates the mean and standard deviation of the lengths of sentences
(in words) in a sample text.
"""
sentences = filter(lambda s : len(s.strip()) > 0, _split_sentences(sample))
sentence_lengths = map(len, map(_split_words, sentences))
self.__generated_sentence_mean = _mean(sentence_lengths)
self.__generated_sentence_sigma = _sigma(sentence_lengths)
def __generate_paragraph_statistics(self, sample):
"""
Calculates the mean and standard deviation of the lengths of paragraphs
(in sentences) in a sample text.
"""
paragraphs = filter(lambda s : len(s.strip()) > 0, _split_paragraphs(sample))
paragraph_lengths = map(len, map(_split_sentences, paragraphs))
self.__generated_paragraph_mean = _mean(paragraph_lengths)
self.__generated_paragraph_sigma = _sigma(paragraph_lengths)
def reset_statistics(self):
"""
Returns the values of sentence_mean, sentence_sigma, paragraph_mean,
and paragraph_sigma to their values as calculated from the sample
text.
"""
self.sentence_mean = self.__generated_sentence_mean
self.sentence_sigma = self.__generated_sentence_sigma
self.paragraph_mean = self.__generated_paragraph_mean
self.paragraph_sigma = self.__generated_paragraph_sigma
def __get_sample(self):
"""
The sample text that generated sentences are based on.
Sentences are generated so that they will have a similar distribution
of word, sentence and paragraph lengths and punctuation.
Sample text should be a string consisting of a number of paragraphs,
each separated by empty lines. Each paragraph should consist of a
number of sentences, separated by periods, exclamation marks and/or
question marks. Sentences consist of words, separated by white space.
"""
return self.__sample
def __set_sample(self, sample):
self.__sample = sample
self.__generate_chains(sample)
self.__generate_statistics(sample)
def __get_dictionary(self):
"""
The list of words that generated sentences are made of.
The dictionary should be a list of one or more words, as strings.
"""
dictionary = []
map(dictionary.extend, self.__words.values())
return dictionary
def __set_dictionary(self, dictionary):
words = {}
for word in dictionary:
try:
word = str(word)
words.setdefault(len(word), set()).add(word)
except TypeError:
continue
if len(words) > 0:
self.__words = words
else:
raise InvalidDictionaryError
sample = property(__get_sample, __set_sample)
dictionary = property(__get_dictionary, __set_dictionary)
def __choose_random_start(self):
starts = set(self.__starts)
chains = set(self.__chains.keys())
valid_starts = list(chains.intersection(starts))
return random.choice(valid_starts)
def generate_sentence(self, start_with_lorem=False):
"""
Generates a single sentence, of random length.
If start_with_lorem=True, then the sentence will begin with the
standard "Lorem ipsum..." first sentence.
"""
if len(self.__chains) == 0 or len(self.__starts) == 0:
raise InvalidSampleError
if len(self.__words) == 0:
raise InvalidDictionaryError
# The length of the sentence is a normally distributed random variable.
sentence_length = random.normalvariate(self.sentence_mean,
self.sentence_sigma)
sentence_length = max(int(round(sentence_length)), 1)
sentence = []
previous = ()
word_delimiter = '' # Defined here in case while loop doesn't run
# Start the sentence with "Lorem ipsum...", if desired
if start_with_lorem:
lorem = "lorem ipsum dolor sit amet, consecteteur adipiscing elit"
lorem = lorem.split()
sentence += lorem[:sentence_length]
last_char = sentence[-1][-1]
if last_char in _DELIMITERS_WORDS:
word_delimiter = last_char
# Generate a sentence from the "chains"
while len(sentence) < sentence_length:
# If the current starting point is invalid, choose another randomly
if (not self.__chains.has_key(previous)):
previous = self.__choose_random_start()
# Choose the next "chain" to go to. This determines the next word
# length we'll use, and whether there is e.g. a comma at the end of
# the word.
chain = random.choice(self.__chains[previous])
word_length = chain[0]
# If the word delimiter contained in the chain is also a sentence
# delimiter, then we don't include it because we don't want the
# sentence to end prematurely (we want the length to match the
# sentence_length value).
if chain[1] in _DELIMITERS_SENTENCES:
word_delimiter = ''
else:
word_delimiter = chain[1]
# Choose a word randomly that matches (or closely matches) the
# length we're after.
closest_length = _choose_closest(
self.__words.keys(),
word_length)
word = random.choice(list(self.__words[closest_length]))
sentence += [word + word_delimiter]
previous = (previous[1], word_length)
# Finish the sentence off with capitalisation, a period and
# form it into a string
sentence = ' '.join(sentence)
sentence = sentence.capitalize()
sentence = sentence.rstrip(word_delimiter) + '.'
return sentence
def generate_paragraph(self, start_with_lorem=False):
"""
Generates a single lorem ipsum paragraph, of random length.
If start_with_lorem=True, then the paragraph will begin with the
standard "Lorem ipsum..." first sentence.
"""
paragraph = []
# The length of the paragraph is a normally distributed random variable.
paragraph_length = random.normalvariate(self.paragraph_mean,
self.paragraph_sigma)
paragraph_length = max(int(round(paragraph_length)), 1)
# Construct a paragraph from a number of sentences.
while len(paragraph) < paragraph_length:
sentence = self.generate_sentence(
start_with_lorem = (start_with_lorem and len(paragraph) == 0)
)
paragraph += [sentence]
# Form the paragraph into a string.
paragraph = ' '.join(paragraph)
return paragraph
class MarkupGenerator(Generator):
"""
Provides a number of methods for producing "lorem ipsum" text with
varying formats.
"""
def __generate_markup(self, begin, end, between, quantity,
start_with_lorem, function):
"""
Generates multiple pieces of text, with begin before each piece, end
after each piece, and between between each piece. Accepts a function
that returns a string.
"""
text = []
while len(text) < quantity:
part = function(
start_with_lorem = (start_with_lorem and len(text) == 0)
)
part = begin + part + end
text += [part]
text = between.join(text)
return text
def __generate_markup_paragraphs(self, begin_paragraph, end_paragraph,
between_paragraphs, quantity, start_with_lorem=False):
return self.__generate_markup(
begin_paragraph,
end_paragraph,
between_paragraphs,
quantity,
start_with_lorem,
self.generate_paragraph)
def __generate_markup_sentences(self, begin_sentence, end_sentence,
between_sentences, quantity, start_with_lorem=False):
return self.__generate_markup(
begin_sentence,
end_sentence,
between_sentences,
quantity,
start_with_lorem,
self.generate_sentence)
def generate_paragraphs_plain(self, quantity, start_with_lorem=False):
"""Generates a number of paragraphs, separated by empty lines."""
return self.__generate_markup_paragraphs(
begin_paragraph='',
end_paragraph='',
between_paragraphs=_NEWLINE * 2,
quantity=quantity,
start_with_lorem=start_with_lorem
)
def generate_sentences_plain(self, quantity, start_with_lorem=False):
"""Generates a number of sentences."""
return self.__generate_markup_sentences(
begin_sentence='',
end_sentence='',
between_sentences=' ',
quantity=quantity,
start_with_lorem=start_with_lorem
)
def generate_paragraphs_html_p(self, quantity, start_with_lorem=False):
"""
Generates a number of paragraphs, with each paragraph
surrounded by HTML pararaph tags.
"""
return self.__generate_markup_paragraphs(
begin_paragraph='<p>' + _NEWLINE + '\t',
end_paragraph=_NEWLINE + '</p>',
between_paragraphs=_NEWLINE,
quantity=quantity,
start_with_lorem=start_with_lorem
)
def generate_sentences_html_p(self, quantity, start_with_lorem=False):
"""
Generates a number of sentences, with each sentence
surrounded by HTML pararaph tags.
"""
return self.__generate_markup_sentences(
begin_sentence='<p>' + _NEWLINE + '\t',
end_sentence=_NEWLINE + '</p>',
between_sentences=_NEWLINE,
quantity=quantity,
start_with_lorem=start_with_lorem
)
def generate_paragraphs_html_li(self, quantity, start_with_lorem=False):
"""Generates a number of paragraphs, separated by empty lines."""
output = self.__generate_markup_paragraphs(
begin_paragraph='\t<li>\n\t\t',
end_paragraph='\n\t</li>',
between_paragraphs=_NEWLINE,
quantity=quantity,
start_with_lorem=start_with_lorem
)
return ('<ul>' + _NEWLINE + output + _NEWLINE + '</ul>')
def generate_sentences_html_li(self, quantity, start_with_lorem=False):
"""Generates a number of sentences surrounded by HTML 'li' tags."""
output = self.__generate_markup_sentences(
begin_sentence='\t<li>' + _NEWLINE + '\t\t',
end_sentence=_NEWLINE + '\t</li>',
between_sentences=_NEWLINE,
quantity=quantity,
start_with_lorem=start_with_lorem
)
return ('<ul>' + _NEWLINE + output + _NEWLINE + '</ul>')