forked from andwatson/coseismic_practical
-
Notifications
You must be signed in to change notification settings - Fork 0
/
coseis_lib.py
705 lines (562 loc) · 26.3 KB
/
coseis_lib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
#!/usr/bin/env python3
'''
## coseis_lib.py
Library of python functions to be used with the coseismic_practical.
'''
# Packages
import numpy as np
import matplotlib.pyplot as plt
from cmcrameri import cm
eps = 1e-14
#-------------------------------------------------------------------------------
def disloc3d3(x, y, xoff=0, yoff=0,
depth=5e3, length=1e3, width=1e3,
slip=0.0, opening=10.0,
strike=0.0, dip=0.0, rake=0.0,
nu=0.25):
'''
Calculate surface displacements for Okada85 dislocation model
Original version at "https://github.com/scottyhq/roipy"
%--------------------------------------------------------------
OKADA85 Surface deformation due to a finite rectangular source.
[uE,uN,uZ,uZE,uZN,uNN,uNE,uEN,uEE] = OKADA85(...
E,N,DEPTH,STRIKE,DIP,LENGTH,WIDTH,RAKE,SLIP,OPEN)
computes displacements, tilts and strains at the surface of an elastic
half-space, due to a dislocation defined by RAKE, SLIP, and OPEN on a
rectangular fault defined by orientation STRIKE and DIP, and size LENGTH and
WIDTH. The fault centroid is located (0,0,-DEPTH).
E,N : coordinates of observation points in a geographic referential
(East,North,Up) relative to fault centroid (units are described below)
DEPTH : depth of the fault centroid (DEPTH > 0)
STRIKE : fault trace direction (0 to 360 relative to North), defined so
that the fault dips to the right side of the trace
DIP : angle between the fault and a horizontal plane (0 to 90)
LENGTH : fault length in the STRIKE direction (LENGTH > 0)
WIDTH : fault width in the DIP direction (WIDTH > 0)
RAKE : direction the hanging wall moves during rupture, measured relative
to the fault STRIKE (-180 to 180).
SLIP : dislocation in RAKE direction (length unit)
OPEN : dislocation in tensile component (same unit as SLIP)
returns the following variables (same matrix size as E and N):
uN,uE,uZ : displacements (unit of SLIP and OPEN)
Orginal matlab function from:
http://www.mathworks.com/matlabcentral/fileexchange/25982-okada--surface-deformation-due-to-a-finite-rectangular-source/content/okada85.m
'''
# check that top of fault isn't above 0 m surface
top_depth = depth - (width/2) * np.sin(np.deg2rad(dip))
assert top_depth >= np.float(0), "Fault breaches 0 m surface, please change either centroid depth or fault width."
x = x - xoff
y = y - yoff
e = x
n = y
strike = np.deg2rad(strike)
dip = np.deg2rad(dip)
rake = np.deg2rad(rake)
L = length
W = width
U1 = np.cos(rake) * slip
U2 = np.sin(rake) * slip
U3 = opening
d = depth + np.sin(dip) * W / 2
ec = e + np.cos(strike) * np.cos(dip) * W / 2
nc = n - np.sin(strike) * np.cos(dip) * W / 2
x = np.cos(strike) * nc + np.sin(strike) * ec + L / 2
y = np.sin(strike) * nc - np.cos(strike) * ec + np.cos(dip) * W
p = y * np.cos(dip) + d * np.sin(dip)
q = y * np.sin(dip) - d * np.cos(dip)
ux = - U1 / (2 * np.pi) * chinnery(ux_ss, x, p, L, W, q, dip, nu) - \
U2 / (2 * np.pi) * chinnery(ux_ds, x, p, L, W, q, dip, nu) + \
U3 / (2 * np.pi) * chinnery(ux_tf, x, p, L, W, q, dip, nu)
uy = - U1 / (2 * np.pi) * chinnery(uy_ss, x, p, L, W, q, dip, nu) - \
U2 / (2 * np.pi) * chinnery(uy_ds, x, p, L, W, q, dip, nu) + \
U3 / (2 * np.pi) * chinnery(uy_tf, x, p, L, W, q, dip, nu)
uz = - U1 / (2 * np.pi) * chinnery(uz_ss, x, p, L, W, q, dip, nu) - \
U2 / (2 * np.pi) * chinnery(uz_ds, x, p, L, W, q, dip, nu) + \
U3 / (2 * np.pi) * chinnery(uz_tf, x, p, L, W, q, dip, nu)
ue = np.sin(strike) * ux - np.cos(strike) * uy
un = np.cos(strike) * ux + np.sin(strike) * uy
return np.vstack((ue, un, uz))
'''
Notes for I... and K... subfunctions:
1. original formulas use Lame's parameters as mu/(mu+lambda) which
depends only on the Poisson's ratio = 1 - 2*nu
2. tests for cos(dip) == 0 are made with "cos(dip) > eps"
because cos(90*np.pi/180) is not zero but = 6.1232e-17 (!)
NOTE: don't use cosd and sind because of incompatibility
with Matlab v6 and earlier...
'''
def chinnery(f, x, p, L, W, q, dip, nu):
''' % Chinnery's notation [equation (24) p. 1143]'''
u = ( f(x, p, q, dip, nu) -
f(x, p - W, q, dip, nu) -
f(x - L, p, q, dip, nu) +
f(x - L, p - W, q, dip, nu) )
return u
'''
Displacement subfunctions
strike-slip displacement subfunctions [equation (25) p. 1144]
'''
def ux_ss(xi, eta, q, dip, nu):
R = np.sqrt(xi ** 2 + eta ** 2 + q ** 2)
u = xi * q / (R * (R + eta)) + \
I1(xi, eta, q, dip, nu, R) * np.sin(dip)
k = (q != 0)
#u[k] = u[k] + np.arctan2( xi[k] * (eta[k]) , (q[k] * (R[k])))
u[k] = u[k] + np.arctan( (xi[k] * eta[k]) / (q[k] * R[k]) )
return u
def uy_ss(xi, eta, q, dip, nu):
R = np.sqrt(xi ** 2 + eta ** 2 + q ** 2)
u = (eta * np.cos(dip) + q * np.sin(dip)) * q / (R * (R + eta)) + \
q * np.cos(dip) / (R + eta) + \
I2(eta, q, dip, nu, R) * np.sin(dip)
return u
def uz_ss(xi, eta, q, dip, nu):
R = np.sqrt(xi ** 2 + eta ** 2 + q ** 2)
db = eta * np.sin(dip) - q * np.cos(dip)
u = (eta * np.sin(dip) - q * np.cos(dip)) * q / (R * (R + eta)) + \
q * np.sin(dip) / (R + eta) + \
I4(db, eta, q, dip, nu, R) * np.sin(dip)
return u
def ux_ds(xi, eta, q, dip, nu):
R = np.sqrt(xi ** 2 + eta ** 2 + q ** 2)
u = q / R - \
I3(eta, q, dip, nu, R) * np.sin(dip) * np.cos(dip)
return u
def uy_ds(xi, eta, q, dip, nu):
R = np.sqrt(xi ** 2 + eta ** 2 + q ** 2)
u = ( (eta * np.cos(dip) + q * np.sin(dip)) * q / (R * (R + xi)) -
I1(xi, eta, q, dip, nu, R) * np.sin(dip) * np.cos(dip) )
k = (q != 0)
u[k] = u[k] + np.cos(dip) * np.arctan( (xi[k] * eta[k]) / (q[k] * R[k]))
return u
def uz_ds(xi, eta, q, dip, nu):
R = np.sqrt(xi ** 2 + eta ** 2 + q ** 2)
db = eta * np.sin(dip) - q * np.cos(dip)
u = ( db * q / (R * (R + xi)) -
I5(xi, eta, q, dip, nu, R, db) * np.sin(dip) * np.cos(dip) )
k = (q != 0)
#u[k] = u[k] + np.sin(dip) * np.arctan2(xi[k] * eta[k] , q[k] * R[k])
u[k] = u[k] + np.sin(dip) * np.arctan( (xi[k] * eta[k]) / (q[k] * R[k]))
return u
def ux_tf(xi, eta, q, dip, nu):
R = np.sqrt(xi ** 2 + eta ** 2 + q ** 2)
u = q ** 2 / (R * (R + eta)) - \
I3(eta, q, dip, nu, R) * (np.sin(dip) ** 2)
return u
def uy_tf(xi, eta, q, dip, nu):
R = np.sqrt(xi ** 2 + eta ** 2 + q ** 2)
u = - (eta * np.sin(dip) - q * np.cos(dip)) * q / (R * (R + xi)) - \
np.sin(dip) * xi * q / (R * (R + eta)) - \
I1(xi, eta, q, dip, nu, R) * (np.sin(dip) ** 2)
k = (q != 0)
#u[k] = u[k] + np.sin(dip) * np.arctan2(xi[k] * eta[k] , q[k] * R[k])
u[k] = u[k] + np.sin(dip) * np.arctan( (xi[k] * eta[k]) , (q[k] * R[k]) )
return u
def uz_tf(xi, eta, q, dip, nu):
R = np.sqrt(xi**2 + eta**2 + q**2)
db = eta * np.sin(dip) - q * np.cos(dip)
u = (eta * np.cos(dip) + q * np.sin(dip)) * q / (R * (R + xi)) + \
np.cos(dip) * xi * q / (R * (R + eta)) - \
I5(xi, eta, q, dip, nu, R, db) * np.sin(dip)**2
k = (q != 0) #not at depth=0?
u[k] = u[k] - np.cos(dip) * np.arctan( (xi[k] * eta[k]) / (q[k] * R[k]) )
return u
def I1(xi, eta, q, dip, nu, R):
db = eta * np.sin(dip) - q * np.cos(dip)
if np.cos(dip) > eps:
I = (1 - 2 * nu) * (- xi / (np.cos(dip) * (R + db))) - \
np.sin(dip) / np.cos(dip) * \
I5(xi, eta, q, dip, nu, R, db)
else:
I = -(1 - 2 * nu) / 2 * xi * q / (R + db) ** 2
return I
def I2(eta, q, dip, nu, R):
I = (1 - 2 * nu) * (-np.log(R + eta)) - \
I3(eta, q, dip, nu, R)
return I
def I3(eta, q, dip, nu, R):
yb = eta * np.cos(dip) + q * np.sin(dip)
db = eta * np.sin(dip) - q * np.cos(dip)
if np.cos(dip) > eps:
I = (1 - 2 * nu) * (yb / (np.cos(dip) * (R + db)) - np.log(R + eta)) + \
np.sin(dip) / np.cos(dip) * \
I4(db, eta, q, dip, nu, R)
else:
I = (1 - 2 * nu) / 2 * (eta / (R + db) + yb * q / (R + db) ** 2 - np.log(R + eta))
return I
def I4(db, eta, q, dip, nu, R):
if np.cos(dip) > eps:
I = (1 - 2 * nu) * 1.0 / np.cos(dip) * \
(np.log(R + db) - np.sin(dip) * np.log(R + eta))
else:
I = - (1 - 2 * nu) * q / (R + db)
return I
def I5(xi, eta, q, dip, nu, R, db):
X = np.sqrt(xi**2 + q**2)
if np.cos(dip) > eps:
with np.errstate(divide='ignore'):
I = (1 - 2 * nu) * 2 / np.cos(dip) * \
np.arctan( (eta * (X + q*np.cos(dip)) + X*(R + X) * np.sin(dip)) /
(xi*(R + X) * np.cos(dip)) )
I[xi == 0] = 0
else:
I = -(1 - 2 * nu) * xi * np.sin(dip) / (R + db)
return I
#-------------------------------------------------------------------------------
def plot_enu(U, model, x, y):
'''
Plot East, North, and Up displacements from disloc3d3.
'''
# convert to km for better plotting
x = x / 1000
y = y / 1000
# convert to mm
U = U * 1000
# coord grids
xx, yy = np.meshgrid(x, y)
# Regrid displacements
xgrid = np.reshape(U[0,:],xx.shape)
ygrid = np.reshape(U[1,:],xx.shape)
zgrid = np.reshape(U[2,:],xx.shape)
# Fault outline for plotting
end1x, end2x, end1y, end2y, c1x, c2x, c3x, c4x, c1y, c2y, c3y, c4y = fault_for_plotting(model)
# Setup plot
fig, ax = plt.subplots(2, 2, figsize=(20, 18))
extent = (x[0], x[-1], y[0], y[-1])
# Plot East
im_e = ax[0,0].imshow(xgrid, extent=extent, origin='lower', cmap=cm.batlow)
ax[0,0].contour(xx, yy, xgrid, linestyles='dashed', colors='white')
ax[0,0].plot(np.array([end1x, end2x])/1000, np.array([end1y, end2y])/1000, color='Black')
ax[0,0].scatter(end1x/1000, end1y/1000, color='Black')
ax[0,0].plot(np.array([c1x, c2x, c3x, c4x, c1x])/1000, np.array([c1y, c2y, c3y, c4y, c1y])/1000, color='Black')
fig.colorbar(im_e, ax=ax[0,0])
ax[0,0].set_xlabel('Easting (km)')
ax[0,0].set_ylabel('Northing (km)')
ax[0,0].set_title('East displacement (mm)')
# Plot North
im_n = ax[0,1].imshow(ygrid, extent=extent, origin='lower', cmap=cm.batlow)
ax[0,1].contour(xx, yy, ygrid, linestyles='dashed', colors='white')
ax[0,1].plot(np.array([end1x, end2x])/1000, np.array([end1y, end2y])/1000, color='Black')
ax[0,1].scatter(end1x/1000, end1y/1000, color='Black')
ax[0,1].plot(np.array([c1x, c2x, c3x, c4x, c1x])/1000, np.array([c1y, c2y, c3y, c4y, c1y])/1000, color='Black')
fig.colorbar(im_n, ax=ax[0,1])
ax[0,1].set_xlabel('Easting (km)')
ax[0,1].set_ylabel('Northing (km)')
ax[0,1].set_title('North displacement (mm)')
# Plot Up
im_u = ax[1,0].imshow(zgrid, extent=extent, origin='lower', cmap=cm.batlow)
ax[1,0].contour(xx, yy, zgrid, linestyles='dashed', colors='white')
ax[1,0].plot(np.array([end1x, end2x])/1000, np.array([end1y, end2y])/1000, color='Black')
ax[1,0].scatter(end1x/1000, end1y/1000, color='Black')
ax[1,0].plot(np.array([c1x, c2x, c3x, c4x, c1x])/1000, np.array([c1y, c2y, c3y, c4y, c1y])/1000, color='Black')
fig.colorbar(im_u, ax=ax[1,0])
ax[1,0].set_xlabel('Easting (km)')
ax[1,0].set_ylabel('Northing (km)')
ax[1,0].set_title('Vertical displacement (mm)')
# Plot 3D deformation
im_3d = ax[1,1].imshow(zgrid, extent=extent, origin='lower', cmap=cm.batlow)
ax[1,1].plot(np.array([end1x, end2x])/1000, np.array([end1y, end2y])/1000, color='Black')
ax[1,1].scatter(end1x/1000, end1y/1000, color='Black')
ax[1,1].plot(np.array([c1x, c2x, c3x, c4x, c1x])/1000, np.array([c1y, c2y, c3y, c4y, c1y])/1000, color='Black')
fig.colorbar(im_3d, ax=ax[1,1], label='Vertical displacement (mm)')
ax[1,1].quiver(xx[24::25, 24::25], yy[24::25, 24::25], xgrid[24::25, 24::25]/1000, ygrid[24::25, 24::25]/1000, scale=1, color='White')
ax[1,1].set_xlabel('Easting (km)')
ax[1,1].set_ylabel('Northing (km)')
ax[1,1].set_title('3D displacement (mm)')
#-------------------------------------------------------------------------------
def plot_los(U, model, x, y, e2los, n2los, u2los):
'''
Plot line-of-sight displacements from East, North, and Up displacements.
'''
# convert to km for better plotting
x = x / 1000
y = y / 1000
# coord grids
xx, yy = np.meshgrid(x, y)
# Regrid displacements
xgrid = np.reshape(U[0,:],xx.shape)
ygrid = np.reshape(U[1,:],xx.shape)
zgrid = np.reshape(U[2,:],xx.shape)
# Convert to LOS
los_grid = (xgrid * e2los) + (ygrid * n2los) + (zgrid * u2los)
los_grid_wrap = np.mod(los_grid + 10000, 0.028333)
# Fault outline for plotting
end1x, end2x, end1y, end2y, c1x, c2x, c3x, c4x, c1y, c2y, c3y, c4y = fault_for_plotting(model)
# Setup plot
fig, ax = plt.subplots(1, 2, figsize=(20, 8))
extent = (x[0], x[-1], y[0], y[-1])
# Plot Unwrapped
im_u = ax[0].imshow(los_grid*1000, extent=extent, origin='lower', cmap=cm.batlow)
ax[0].plot(np.array([end1x, end2x])/1000, np.array([end1y, end2y])/1000, color='White')
ax[0].scatter(end1x/1000, end1y/1000, color='white')
ax[0].plot(np.array([c1x, c2x, c3x, c4x, c1x])/1000, np.array([c1y, c2y, c3y, c4y, c1y])/1000, color='White')
fig.colorbar(im_u, ax=ax[0])
ax[0].set_xlabel('Easting (km)')
ax[0].set_ylabel('Northing (km)')
ax[0].set_title('Unwrapped LOS displacement (mm)')
# Plot Wrapped
im_w = ax[1].imshow(los_grid_wrap/0.028333*2*np.pi-np.pi, extent=extent, origin='lower', cmap=cm.batlowK)
ax[1].plot(np.array([end1x, end2x])/1000, np.array([end1y, end2y])/1000, color='White')
ax[1].scatter(end1x/1000, end1y/1000, color='white')
ax[1].plot(np.array([c1x, c2x, c3x, c4x, c1x])/1000, np.array([c1y, c2y, c3y, c4y, c1y])/1000, color='White')
fig.colorbar(im_w, ax=ax[1])
ax[1].set_xlabel('Easting (km)')
ax[1].set_ylabel('Northing (km)')
ax[1].set_title('Wrapped LOS displacement (radians)')
#-------------------------------------------------------------------------------
def plot_data_model(x, y, U, model, data_unw, e2los, n2los, u2los, show_grid=False):
'''
Compare modelled LOS displacements with wrapped and unwrapped intererograms.
'''
# convert to km for better plotting
x = x / 1000
y = y / 1000
# coord grids
xx, yy = np.meshgrid(x, y)
# Regrid displacements
xgrid = np.reshape(U[0,:],xx.shape)
ygrid = np.reshape(U[1,:],xx.shape)
zgrid = np.reshape(U[2,:],xx.shape)
# Convert to LOS
los_grid = (xgrid * e2los) + (ygrid * n2los) + (zgrid * u2los)
los_grid_wrap = np.mod(los_grid+10000, 0.028333)
# Rewrap the original
with np.errstate(all='ignore'):
data_diff = np.mod(data_unw+10000, 0.028333)
# Calculate residual
resid = data_unw - los_grid
with np.errstate(all='ignore'):
resid_wrapped = np.mod(resid+10000, 0.028333)
# Fault outline for plotting
end1x, end2x, end1y, end2y, c1x, c2x, c3x, c4x, c1y, c2y, c3y, c4y = fault_for_plotting(model)
# Calculate and print seismic moment
seis_moment = 3e10 * model[5] * (model[6] * model[8]) # in Nm
moment_mag = (2/3) * np.log10(seis_moment/1e-7) - 10.7
print('Estimated seismic moment = {} Nm'.format(seis_moment))
print('Estimated moment magnitude = {}'.format(round(moment_mag,2)))
print('RMS misfit between data and model = {} mm'.format(round(rms_misfit(data_unw,los_grid)*1000,2)))
# Setup plot
fig, ax = plt.subplots(3, 2, figsize=(23, 30))
extent = (x[0], x[-1], y[0], y[-1])
# Plot unwrapped data
im_u = ax[0,0].imshow(data_unw*1000, extent=extent, origin='lower', cmap=cm.batlow)
ax[0,0].plot(np.array([end1x, end2x])/1000, np.array([end1y, end2y])/1000, color='black')
ax[0,0].scatter(end1x/1000, end1y/1000, color='black')
if show_grid:
ax[0,0].grid()
ax[0,0].plot(np.array([c1x, c2x, c3x, c4x, c1x])/1000, np.array([c1y, c2y, c3y, c4y, c1y])/1000, color='black')
fig.colorbar(im_u, ax=ax[0,0])
ax[0,0].set_xlabel('Easting (km)')
ax[0,0].set_ylabel('Northing (km)')
ax[0,0].set_title('Unwrapped interferogram (mm)')
# Plot unwrapped model
im_u = ax[1,0].imshow(los_grid*1000, extent=extent, origin='lower', cmap=cm.batlow)
ax[1,0].plot(np.array([end1x, end2x])/1000, np.array([end1y, end2y])/1000, color='black')
ax[1,0].scatter(end1x/1000, end1y/1000, color='black')
if show_grid:
ax[1,0].grid()
ax[1,0].plot(np.array([c1x, c2x, c3x, c4x, c1x])/1000, np.array([c1y, c2y, c3y, c4y, c1y])/1000, color='black')
fig.colorbar(im_u, ax=ax[1,0])
ax[1,0].set_xlabel('Easting (km)')
ax[1,0].set_ylabel('Northing (km)')
ax[1,0].set_title('Unwrapped model (mm)')
# Plot unwrapped residual
im_u = ax[2,0].imshow(resid*1000, extent=extent, origin='lower', cmap=cm.batlow)
ax[2,0].plot(np.array([end1x, end2x])/1000, np.array([end1y, end2y])/1000, color='black')
ax[2,0].scatter(end1x/1000, end1y/1000, color='black')
if show_grid:
ax[2,0].grid()
ax[2,0].plot(np.array([c1x, c2x, c3x, c4x, c1x])/1000, np.array([c1y, c2y, c3y, c4y, c1y])/1000, color='black')
fig.colorbar(im_u, ax=ax[2,0])
ax[2,0].set_xlabel('Easting (km)')
ax[2,0].set_ylabel('Northing (km)')
ax[2,0].set_title('Unwrapped residual (mm)')
# Plot wrapped data
im_u = ax[0,1].imshow(data_diff/0.028333*2*np.pi-np.pi, extent=extent, origin='lower', vmin=-3.14, vmax=3.14, cmap=cm.batlowK)
ax[0,1].plot(np.array([end1x, end2x])/1000, np.array([end1y, end2y])/1000, color='black')
ax[0,1].scatter(end1x/1000, end1y/1000, color='black')
if show_grid:
ax[0,1].grid()
ax[0,1].plot(np.array([c1x, c2x, c3x, c4x, c1x])/1000, np.array([c1y, c2y, c3y, c4y, c1y])/1000, color='black')
fig.colorbar(im_u, ax=ax[0,1])
ax[0,1].set_xlabel('Easting (km)')
ax[0,1].set_ylabel('Northing (km)')
ax[0,1].set_title('Wrapped interferogram (mm)')
# Plot wrapped model
im_u = ax[1,1].imshow(los_grid_wrap/0.028333*2*np.pi-np.pi, extent=extent, origin='lower', vmin=-3.14, vmax=3.14, cmap=cm.batlowK)
ax[1,1].plot(np.array([end1x, end2x])/1000, np.array([end1y, end2y])/1000, color='black')
ax[1,1].scatter(end1x/1000, end1y/1000, color='black')
if show_grid:
ax[1,1].grid()
ax[1,1].plot(np.array([c1x, c2x, c3x, c4x, c1x])/1000, np.array([c1y, c2y, c3y, c4y, c1y])/1000, color='black')
fig.colorbar(im_u, ax=ax[1,1])
ax[1,1].set_xlabel('Easting (km)')
ax[1,1].set_ylabel('Northing (km)')
ax[1,1].set_title('Wrapped model (mm)')
# Plot wrapped residual
im_u = ax[2,1].imshow(resid_wrapped/0.028333*2*np.pi-np.pi, extent=extent, origin='lower', vmin=-3.14, vmax=3.14, cmap=cm.batlowK)
ax[2,1].plot(np.array([end1x, end2x])/1000, np.array([end1y, end2y])/1000, color='black')
ax[2,1].scatter(end1x/1000, end1y/1000, color='black')
if show_grid:
ax[2,1].grid()
ax[2,1].plot(np.array([c1x, c2x, c3x, c4x, c1x])/1000, np.array([c1y, c2y, c3y, c4y, c1y])/1000, color='black')
fig.colorbar(im_u, ax=ax[2,1])
ax[2,1].set_xlabel('Easting (km)')
ax[2,1].set_ylabel('Northing (km)')
ax[2,1].set_title('Wrapped residual (mm)')
#-------------------------------------------------------------------------------
def fault_for_plotting(model):
'''
Get trace and projected corners of fault for plotting.
'''
cen_offset = model[7]/np.tan(np.deg2rad(model[3]))
trace_cen_x = model[0] - (cen_offset * np.cos(np.deg2rad(model[2])))
trace_cen_y = model[1] + (cen_offset * np.sin(np.deg2rad(model[2])))
top_depth = model[7] - (model[8]/2)*np.sin(np.deg2rad(model[3]))
bottom_depth = model[7] + (model[8]/2)*np.sin(np.deg2rad(model[3]))
end1x = trace_cen_x + np.sin(np.deg2rad(model[2])) * model[6]/2
end2x = trace_cen_x - np.sin(np.deg2rad(model[2])) * model[6]/2
end1y = trace_cen_y + np.cos(np.deg2rad(model[2])) * model[6]/2
end2y = trace_cen_y - np.cos(np.deg2rad(model[2])) * model[6]/2
c1x = end1x + np.sin(np.deg2rad(model[2]+90)) * (top_depth / np.tan(np.deg2rad(model[3])))
c2x = end1x + np.sin(np.deg2rad(model[2]+90)) * (bottom_depth / np.tan(np.deg2rad(model[3])))
c3x = end2x + np.sin(np.deg2rad(model[2]+90)) * (bottom_depth / np.tan(np.deg2rad(model[3])))
c4x = end2x + np.sin(np.deg2rad(model[2]+90)) * (top_depth / np.tan(np.deg2rad(model[3])))
c1y = end1y + np.cos(np.deg2rad(model[2]+90)) * (top_depth / np.tan(np.deg2rad(model[3])))
c2y = end1y + np.cos(np.deg2rad(model[2]+90)) * (bottom_depth / np.tan(np.deg2rad(model[3])))
c3y = end2y + np.cos(np.deg2rad(model[2]+90)) * (bottom_depth / np.tan(np.deg2rad(model[3])))
c4y = end2y + np.cos(np.deg2rad(model[2]+90)) * (top_depth / np.tan(np.deg2rad(model[3])))
return end1x, end2x, end1y, end2y, c1x, c2x, c3x, c4x, c1y, c2y, c3y, c4y
#-------------------------------------------------------------------------------
def comp2los(azimuth_angle, incidence_angle):
'''
Convert azimuth and incidence angle to unit vector components.
'''
e2los = np.cos(np.deg2rad(azimuth_angle)) * np.sin(np.deg2rad(incidence_angle))
n2los = -np.sin(np.deg2rad(azimuth_angle)) * np.sin(np.deg2rad(incidence_angle))
u2los = -np.cos(np.deg2rad(incidence_angle))
return e2los, n2los, u2los
#-------------------------------------------------------------------------------
def load_ifgs(example_name, downsamp=False):
'''
Load of wrapped and unwrapped interferograms for a given example.
Options are "iran", "greece", and "afghanistan".
'''
# set input file paths
if example_name == 'iran':
unw_file = 'data/iran/sarpol.unw'
diff_file = 'data/iran/sarpol.diff'
param_file = 'data/iran/sarpol.par'
elif example_name == 'greece':
unw_file = 'data/greece/greece.unw'
diff_file = 'data/greece/greece.diff'
param_file = 'data/greece/greece.par'
elif example_name == 'afghanistan':
unw_file = 'data/afghanistan/afghanistan.unw'
diff_file = 'data/afghanistan/afghanistan.diff'
param_file = 'data/afghanistan/afghanistan.par'
else:
print('Please provide name of example to load')
# Read height and width in pixels from parameter file
ifg_length = int(get_par(param_file,'length'))
ifg_width = int(get_par(param_file,'width'))
# Read coordinates of bottom corner
corner_x = float(get_par(param_file,'corner_x'))
corner_y = float(get_par(param_file,'corner_y'))
# Read spacing of coordinates
x_spacing = float(get_par(param_file,'x_spacing'))
y_spacing = float(get_par(param_file,'y_spacing'))
# Generate coordinate grids
x = corner_x + x_spacing*np.arange(1,ifg_width+1) - x_spacing/2
y = corner_y + y_spacing*np.arange(1,ifg_length+1) - y_spacing/2
# Load the interferogram
unw = np.fromfile(unw_file, dtype='float32').reshape((ifg_length, ifg_width))
diff = np.fromfile(diff_file, dtype='float32').reshape((ifg_length, ifg_width))
# Downsample Sarpol by selecting every other point, so as to increase run speed on binder.
# Doing so here so that it's easy to change back.
if downsamp:
x = x[0::2]
y = y[0::2]
unw = unw[0::2,0::2]
diff = diff[0::2,0::2]
# The Afghanistan earthquake has a low signal-to-noise ratio, so the reference point
# noticeably impacts the residual rms. Shifting it so that the noise is roughly zero centred.
if example_name == 'afghanistan':
unw = unw - np.nanmean(unw)
return x, y, unw, diff
#-------------------------------------------------------------------------------
def get_par(par_file,par_name):
'''
Returns the value of the requested parameter in the parameter file.
INPUTS
par_file = name of param file (str)
par_name = name of desired par (str)
OUTPUTS
par_val = value of param for par file
'''
with open(par_file, 'r') as f:
for line in f.readlines():
if par_name in line:
par_val = line.split()[1].strip()
return par_val
#-------------------------------------------------------------------------------
def rms_misfit(a,b):
'''
Calculate the root-mean-square misfit between 'a' and 'b'.
INPUTS
a,b = two arrays of same length
OUTPUTS
rms = rms misfit between a and b (a-b)
'''
rms = np.sqrt(np.nanmean((a-b)**2))
return rms
#-------------------------------------------------------------------------------
def print_results():
'''
Print desired model parameter values for the three examples
'''
output = """
Well done for completing the practical.
Printed below are 'good fit' model parameters for the three examples, based on the provided source
and with a bit of adjusting from John Elliott.
========================================
Greece
----------------------------------------
xcen = 150
ycen = -150
strike = 315
dip = 36
rake = -100
slip = 1.15
centroid depth = 4500
width = 9400
length = 9900
Source: https://pubs.geoscienceworld.org/ssa/srl/article/93/5/2584/614110/Coseismic-Surface-Deformation-Fault-Modeling-and
========================================
Afghanistan
----------------------------------------
xcen = 1000
ycen = 1000
strike = 210
dip = 78
rake = 15
slip = 1.4
centroid depth = 2800
width = 4000
length = 6000
Source: https://earthquake.usgs.gov/earthquakes/eventpage/us7000hj3u/executive
========================================
Iran
----------------------------------------
xcen = -20000
ycen = -10000
strike = 353.7
dip = 136.8
rake = 3.05
slip = 3.05
centroid depth = 14800
width = 21200
length = 40100
Source: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018JB016221
"""
print(output)