-
Notifications
You must be signed in to change notification settings - Fork 672
/
create_data_distribution.py
155 lines (124 loc) · 4.16 KB
/
create_data_distribution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#!/usr/bin/env python
import glob
import json
import random
import numpy as np
import os
import math
leaf_map = json.loads(open("leaf-map.json", "r").read())
INPUT_FOLDER = "./raw"
OUTPUT_FOLDER = "./lmdb"
TRAIN_PERCENT = 80
def determine_leaf_group(leaf_identifier, className):
global leaf_map
try:
foo = leaf_map[leaf_identifier.lower().strip()]
if len(foo) == 1:
return foo[0]
else:
for _suggestion in foo:
if _suggestion.find(className) != -1:
return _suggestion
return str(random.randint(1,10000000000000000000000))
except:
return str(random.randint(1,10000000000000000000000))
def compute_per_class_distribution(DATASET):
classMap = {}
count = 0
for datum in DATASET:
try:
classMap[datum[1]].append(datum[0])
count += 1
except:
classMap[datum[1]] = [datum[0]]
count += 1
for _key in classMap:
classMap[_key] = len(classMap[_key])
return classMap
def distribute_buckets(BUCKETS, train_probability):
train = []
test = []
for _key in BUCKETS.keys():
bucket = BUCKETS[_key]
if random.random() <= train_probability:
train += bucket
else:
test += bucket
return train, test
for data_type in glob.glob(INPUT_FOLDER +"/*"):
data_type_name = data_type.split("/")[-1]
print data_type_name
BUCKETS = {}
all_images = glob.glob(data_type+"/*/*")
for _img in all_images:
image_name = _img.split("/")[-1]
className = _img.split("/")[-2]
#Check if the image belongs to a particular known group
image_identifier = image_name.replace("_final_masked","")
image_identifier = image_identifier.split("___")[-1]
image_identifier = image_identifier.split("copy")[0].replace(".jpg", "").replace(".JPG","").replace(".png","").replace(".PNG", "")
#print "\"",image_identifier,"\"", className
#print image_name, "======================>", determine_leaf_group(image_identifier, className)
group = determine_leaf_group(image_identifier, className)
try:
BUCKETS[group].append((_img, className))
except:
BUCKETS[group] = [(_img, className)]
train_probs = [0.2, 0.4, 0.5, 0.6, 0.8]
for train_prob in train_probs:
CANDIDATE_DISTRIBUTIONS = []
CANDIDATE_VARIANCES = []
for k in range(1000):
#print "======================="
#print "K ::",k
train, test = distribute_buckets(BUCKETS, train_prob)
train_dist = compute_per_class_distribution(train)
test_dist = compute_per_class_distribution(test)
spread_data = []
for _key in train_dist:
#print _key, train_dist[_key] * 1.0 /(train_dist[_key]+test_dist[_key])
spread_data.append(train_dist[_key] * 1.0 /(train_dist[_key]+test_dist[_key]))
CANDIDATE_DISTRIBUTIONS.append((train, test))
CANDIDATE_VARIANCES.append(np.var(spread_data))
#print "Train : ", len(train)
#print "Test : ", len(test)
train, test = CANDIDATE_DISTRIBUTIONS[np.argmax(CANDIDATE_VARIANCES)]
print len(train)
print len(test)
train_dist = compute_per_class_distribution(train)
test_dist = compute_per_class_distribution(test)
spread_data = []
for _key in train_dist:
print _key, train_dist[_key] * 1.0 /(train_dist[_key]+test_dist[_key])
spread_data.append(train_dist[_key] * 1.0 /(train_dist[_key]+test_dist[_key]))
print "Mean :: ", np.mean(spread_data)
print "Variance: ", np.var(spread_data)
target_folder_name = data_type_name + "-" + str(int(math.ceil(train_prob*100)))+"-"+str(int(math.ceil((1-train_prob)*100)))
try:
os.mkdir(OUTPUT_FOLDER+"/"+target_folder_name)
except:
pass
labels_map = {}
for _entry in train:
try:
labels_map[_entry[1]] += 1
except:
labels_map[_entry[1]] = 1
print labels_map
labels_list = sorted(labels_map.keys())
f = open(OUTPUT_FOLDER+"/"+target_folder_name+"/train.txt","w")
train_txt = ""
for _entry in train:
train_txt += os.path.abspath(_entry[0])+"\t"+str(labels_list.index(_entry[1]))+"\n"
f.write(train_txt)
f.close()
f = open(OUTPUT_FOLDER+"/"+target_folder_name+"/test.txt","w")
test_txt = ""
for _entry in test:
test_txt += os.path.abspath(_entry[0])+"\t"+str(labels_list.index(_entry[1]))+"\n"
f.write(test_txt)
f.close()
f = open(OUTPUT_FOLDER+"/"+target_folder_name+"/labels.txt","w")
f.write("\n".join(labels_list))
f.close()
#break