-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsupervised.py
169 lines (150 loc) · 7.36 KB
/
supervised.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
import os.path as op
import copy
import argparse
from lossfuns import *
from dataset import *
from util import *
from model import *
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.metrics import classification_report
from tqdm import tqdm
import warnings
warnings.filterwarnings('ignore')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class ImgNetModel(nn.Module):
def __init__(self, bkb, n_classes):
super(ImgNetModel, self).__init__()
self.n_classes = n_classes
self.bkb = bkb
self.backbone = torchvision.models.resnet50(pretrained=True) # imagenet weights
self.backbone.fc = nn.Identity()
self.classifier = nn.Sequential(*[
nn.Linear(2048, 512),
nn.BatchNorm1d(512),
nn.LeakyReLU(),
nn.Linear(512, self.n_classes)
])
if self.bkb == 'freeze':
for param in self.backbone.parameters():
param.requires_grad = False
def forward(self, x):
return self.classifier(self.backbone(x))
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--data_root', type=str, default='/home/soumitri/projects/def-josedolz/soumitri/misc/SmallSSL/data')
parser.add_argument('--out_root', type=str, default='/home/soumitri/projects/def-josedolz/soumitri/misc/SmallSSL/outputs')
parser.add_argument('--dataset', type=str, choices=['pneumonia', 'CRC', 'covid', 'breast'], help='choose dataset')
parser.add_argument('--bkb', type=str, default='train', choices=['freeze', 'train'], help='keep backbone frozen/full model train')
parser.add_argument('--epochs', type=int, default=100, help='training epochs')
parser.add_argument('--lrate', type=float, default=1e-3, help='learning rate for model')
parser.add_argument('--opti', type=str, default='Adam', choices=['SGD', 'Adam', 'LARS'], help='optimizer to be used')
parser.add_argument('--batchsize', type=int, default=32, help='batchsize for imagenet supervised evaluation')
args = parser.parse_args()
print(args)
ds2dir = {'pneumonia' : 'PneumoniaCXR', 'CRC' : 'Colorectal', 'covid' : 'Covid', 'breast' : 'BreaKHis400X'}
if args.dataset in ['pneumonia', 'covid']:
args.dstype = 'gray'
elif args.dataset in ['CRC', 'breast']:
args.dstype = 'color'
data_path = op.join(args.data_root, ds2dir[args.dataset])
assert op.exists(data_path)
out_dir = '_imagenet_supervised'
prefix = f'{args.dataset}-ImgNet+bkb[{args.bkb}]-LR[{args.lrate}]_opt[{args.opti}]_BS[{args.batchsize}]'
out_path = op.join(args.out_root, out_dir)
traindf, valdf, testdf = eval(f'getdf_{ds2dir[args.dataset]}()')
trainloader, valloader, testloader = get_dataloaders(traindf, valdf, testdf, args.batchsize, args.dstype)
n_classes = len(np.unique(traindf.iloc[:]['label']))
model = ImgNetModel(args.bkb, n_classes)
model = model.to(device)
lossfun = nn.CrossEntropyLoss()
optimizer = optim.Adam(params=model.parameters(), lr=args.lrate)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=25, gamma=0.5)
logs = {'epoch' : [], 'trainloss' : [], 'trainacc' : [], 'valloss' : [], 'valacc' : []}
best_acc = 0.0
best_model_wts = copy.deepcopy(model.state_dict())
for epoch in range(args.epochs):
model.load_state_dict(best_model_wts)
### training ###
model.train()
loss_all = 0.0
y_pred, y_test = [], []
logs['epoch'].append(epoch+1)
train_bar = tqdm(trainloader)
for i, batch in enumerate(train_bar):
data, targets = batch['img'].to(device), batch['label'].to(device)
outputs = model(data)
_, preds = torch.max(outputs, 1)
loss = lossfun(outputs, targets)
loss_all += loss.item()
train_bar.set_description(f"Epoch: {epoch+1} | Step: [{i+1}/{len(trainloader)}] | Loss: {(loss_all / (i+1)):.6f}")
optimizer.zero_grad()
loss.backward()
optimizer.step()
y_pred.append(preds.to(device).long())
y_test.append(targets.to(device).long())
epoch_loss = loss_all / len(trainloader)
y_pred, y_test = torch.cat(y_pred, dim=0).contiguous().cpu().numpy(), torch.cat(y_test, dim=0).contiguous().cpu().numpy()
epoch_accuracy = accuracy_score(y_test, y_pred)
print(f">>> Stats for epoch: {epoch+1} | Train loss: {epoch_loss:.6f} | Train accuracy: {epoch_accuracy:.6f}")
logs['trainloss'].append(epoch_loss)
logs['trainacc'].append(epoch_accuracy)
### validation ###
model.eval()
loss_all = 0.0
y_pred, y_test = [], []
with torch.no_grad():
for i, batch in enumerate(valloader):
data, targets = batch['img'].to(device), batch['label'].to(device)
outputs = model(data)
_, preds = torch.max(outputs, 1)
loss = lossfun(outputs, targets)
loss_all += loss.item()
y_pred.append(preds.to(device).long())
y_test.append(targets.to(device).long())
epoch_loss = loss_all / len(valloader)
y_pred, y_test = torch.cat(y_pred, dim=0).contiguous().cpu().numpy(), torch.cat(y_test, dim=0).contiguous().cpu().numpy()
epoch_accuracy = accuracy_score(y_test, y_pred)
print(f">>> Stats for epoch: {epoch+1} | Val loss: {epoch_loss:.6f} | Val accuracy: {epoch_accuracy:.6f}")
logs['valloss'].append(epoch_loss)
logs['valacc'].append(epoch_accuracy)
if epoch_accuracy >= best_acc:
best_model_wts = copy.deepcopy(model.state_dict())
ckpt = {
'model' : model.state_dict(),
'optimizer' : optimizer.state_dict(),
'scheduler' : scheduler.state_dict(),
'epochs' : epoch
}
torch.save(ckpt, op.join(out_path, f'{prefix}_checkpoint.pt'))
torch.save(model.state_dict(), op.join(out_path, f'{prefix}_clsmodel.pth'))
if epoch > 25:
scheduler.step()
pd.DataFrame(logs).to_csv(op.join(out_path, f"{prefix}_trainvallogs.csv"), index=False)
### testing ###
model.load_state_dict(best_model_wts)
model.eval()
y_pred, y_test = [], []
with torch.no_grad():
for i, batch in enumerate(testloader):
data, targets = batch['img'].to(device), batch['label'].to(device)
outputs = model(data)
_, preds = torch.max(outputs, 1)
loss = lossfun(outputs, targets)
loss_all += loss.item()
y_pred.append(preds.to(device).long())
y_test.append(targets.to(device).long())
epoch_loss = loss_all / len(testloader)
y_pred, y_test = torch.cat(y_pred, dim=0).contiguous().cpu().numpy(), torch.cat(y_test, dim=0).contiguous().cpu().numpy()
cls_report = classification_report(y_test, y_pred, digits=4, output_dict=False)
outfile = open(op.join(out_path, f'{prefix}-TestSet.txt'), 'w')
outfile.write(f"Testset report | ImageNet eval | {args.epochs} epochs \n\n")
outfile.write(cls_report)
outfile.close()
# plot_tsne(model, trainloader, device, f'{out_path}/tsne-train.png')
# plot_tsne(model, testloader, device, f'{out_path}/tsne-test.png')
print('Model and logs saved -- Imagenet supervised evaluation complete!!')
if __name__ == '__main__':
main()