-
Notifications
You must be signed in to change notification settings - Fork 133
/
Copy pathnets.py
59 lines (54 loc) · 2.55 KB
/
nets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# Copyright 2020, Sophos Limited. All rights reserved.
#
# 'Sophos' and 'Sophos Anti-Virus' are registered trademarks of
# Sophos Limited and Sophos Group. All other product and company
# names mentioned are trademarks or registered trademarks of their
# respective owners.
import torch
from torch import nn
import torch.nn.functional as F
class PENetwork(nn.Module):
"""
This is a simple network loosely based on the one used in ALOHA: Auxiliary Loss Optimization for Hypothesis Augmentation (https://arxiv.org/abs/1903.05700)
Note that it uses fewer (and smaller) layers, as well as a single layer for all tag predictions, performance will suffer accordingly.
"""
def __init__(self,use_malware=True,use_counts=True,use_tags=True,n_tags=None,feature_dimension=1024, layer_sizes = None):
self.use_malware=use_malware
self.use_counts=use_counts
self.use_tags=use_tags
self.n_tags = n_tags
if self.use_tags and self.n_tags == None:
raise ValueError("n_tags was None but we're trying to predict tags. Please include n_tags")
super(PENetwork,self).__init__()
p = 0.05
layers = []
if layer_sizes is None:layer_sizes=[512,512,128]
for i,ls in enumerate(layer_sizes):
if i == 0:
layers.append(nn.Linear(feature_dimension,ls))
else:
layers.append(nn.Linear(layer_sizes[i-1],ls))
layers.append(nn.LayerNorm(ls))
layers.append(nn.ELU())
layers.append(nn.Dropout(p))
self.model_base = nn.Sequential(*tuple(layers))
self.malware_head = nn.Sequential(nn.Linear(layer_sizes[-1], 1),
nn.Sigmoid())
self.count_head = nn.Linear(layer_sizes[-1], 1)
self.sigmoid = nn.Sigmoid()
self.tag_head = nn.Sequential(nn.Linear(layer_sizes[-1],64),
nn.ELU(),
nn.Linear(64,64),
nn.ELU(),
nn.Linear(64,n_tags),
nn.Sigmoid())
def forward(self,data):
rv = {}
base_result = self.model_base.forward(data)
if self.use_malware:
rv['malware'] = self.malware_head(base_result)
if self.use_counts:
rv['count'] = self.count_head(base_result)
if self.use_tags:
rv['tags'] = self.tag_head(base_result)
return rv