Skip to content

Latest commit

 

History

History
297 lines (210 loc) · 13.5 KB

README_cn.md

File metadata and controls

297 lines (210 loc) · 13.5 KB

TPU-MLIR

本项目是算能深度学处理器的TPU编译器工程。该工程提供了一套完整的工具链,其可以将不 同框架下预训练的神经网络,转化为可以在算能TPU上高效运算的二进制文件bmodel

算能致力于成为全球领先的通用算力提供商。算能专注于深度学习、RISC-V 处理器等算力产品的研发和推广应用,以自研产品为核心打造了覆盖“云、边、端”的全场景应用矩阵 ,为城市大脑、智算中心、智慧安防、智慧交通、安全生产、工业质检、智能终端等应用提供算力产品及整体解决方案 。公司在北京、上海、深圳、青岛、厦门等国内 10 多个城市及美国、新加坡等国家设有研发中心。

目前该工程直接支持的深度学习框架包括PyTorch、ONNX、TFLite和Caffe,其他框架模型需要转成ONNX。

预编译的 TPU-MLIR Python 包

我们提供 TPU-MLIR Python 包以便跳过编译工程的步骤快速安装。环境要求:python >= 3.10 和 ubuntu:22.04(推荐直接使用我们的docker镜像)。

安装:

pip install tpu_mlir

资源

以下资源可以帮助你更好地了解TPU-MLIR:

序列 文档
01 TPU-MLIR 论文
02 TPU-MLIR 开发参考手册
03 TPU-MLIR 快速入门指南
序列 分享会
01 TPU-MLIR 论文讲解
02 LayerGroup 讲解
序列 主题 视频链接
01 什么是深度学习编译器? 深度学习编译器简介
02 MLIR 简介 基本语法(一), 基本语法(二), 基本语法(三), Dialect Conversion, Pattern Rewriting
03 TPU-MLIR 介绍 概述, 前端转换, Lowering
04 量化 概述, 公式推导, 校准, QAT
05 TPU 内存 Ep1, Ep2
06 TPU-MLIR 实践 转Onnx格式, 图优化, 算子支持, 模型支持, 融合预处理, 精度验证

如果你在完成上述任务时有任何疑问,可以在我们的问答平台中提问或查看现有答案。

编译工程

克隆本工程代码后,需要在docker中编译。

docker pull sophgo/tpuc_dev:latest
  • 如果docker拉取失败,可通过以下方式进行下载:
wget https://sophon-file.sophon.cn/sophon-prod-s3/drive/24/06/14/12/sophgo-tpuc_dev-v3.2_191a433358ad.tar.gz

docker load -i sophgo-tpuc_dev-v3.2_191a433358ad.tar.gz
  • 创建所需镜像:
# myname1234 just a example, you can set your own name
docker run --privileged --name myname1234 -v $PWD:/workspace -it sophgo/tpuc_dev:latest

容器建立后,代码在docker中的目录为/workspace/tpu-mlir

  • 编译代码

在工程目录下运行以下命令:

cd tpu-mlir
source ./envsetup.sh
./build.sh

使用方法

yolov5s.onnx为例,介绍如何编译迁移一个onnx模型至BM1684X TPU平台运行。

该模型来在yolov5的官网: https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5s.onnx

在本工程已经放在regression/model/yolov5s.onnx

准备模型和数据

建立model_yolov5s目录,注意是与本工程同级目录;并把模型文件和图片文件都放入model_yolov5s目录中。

操作如下:

mkdir model_yolov5s && cd model_yolov5s
cp ${REGRESSION_PATH}/model/yolov5s.onnx .
cp -rf ${REGRESSION_PATH}/dataset/COCO2017 .
cp -rf ${REGRESSION_PATH}/image .
mkdir workspace && cd workspace

将模型转化MLIR

如果模型是图片输入,在转模型之前我们需要了解模型的预处理。如果模型用预处理后的npz文件做输入,则不需要考虑预处理。 预处理过程用公式表达如下(x代表输入): $$ y = (x - mean) \times scale $$

官网yolov5的图片是rgb,每个值会乘以1/255,转换成mean和scale对应为0.0,0.0,0.00.0039216,0.0039216,0.0039216

模型转换命令如下:

model_transform.py \
    --model_name yolov5s \
    --model_def ../yolov5s.onnx \
    --input_shapes [[1,3,640,640]] \
    --mean 0.0,0.0,0.0 \
    --scale 0.0039216,0.0039216,0.0039216 \
    --keep_aspect_ratio \
    --pixel_format rgb \
    --output_names 350,498,646 \
    --test_input ../image/dog.jpg \
    --test_result yolov5s_top_outputs.npz \
    --mlir yolov5s.mlir

model_transform.py支持的主要参数如下(完整参数信息请查看开发参考手册):

参数名 必选? 说明
model_name 指定模型名称
model_def 指定模型定义文件,比如.onnx.pt.tflite.prototxt文件
model_data 指定模型权重文件,caffe模型需要,对应.caffemodel文件
input_shapes 指定输入的shape,例如[[1,3,640,640]];二维数组,可以支持多输入情况
resize_dims 原始图片需要resize之后的尺寸;如果不指定,则resize成模型的输入尺寸
keep_aspect_ratio 在Resize时是否保持长宽比,默认为false;设置时会对不足部分补0
mean 图像每个通道的均值,默认为0.0,0.0,0.0
scale 图片每个通道的比值,默认为1.0,1.0,1.0
pixel_format 图片类型,可以是rgb、bgr、gray、rgbd四种情况
output_names 指定输出的名称,如果不指定,则用模型的输出;指定后用该指定名称做输出
test_input 指定输入文件用于验证,可以是图片或npy或npz;可以不指定,则不会正确性验证
test_result 指定验证后的输出文件
excepts 指定需要排除验证的网络层的名称,多个用,隔开
debug 指定后保留中间临时文件;否则会清理掉中间临时文件
mlir 指定输出的mlir文件路径

转成mlir文件后,会生成一个${model_name}_in_f32.npz文件,该文件是模型的输入文件。它是通过对图片输入进行预处理后得到的数据。

MLIR转F16模型

将mlir文件转换成f16的bmodel,操作方法如下:

model_deploy.py \
  --mlir yolov5s.mlir \
  --quantize F16 \
  --processor bm1684x \
  --test_input yolov5s_in_f32.npz \
  --test_reference yolov5s_top_outputs.npz \
  --model yolov5s_1684x_f16.bmodel

model_deploy.py的主要参数说明如下(完整参数信息请查看开发参考手册):

参数名 必选? 说明
mlir 指定mlir文件
quantize 指定默认量化类型,支持F32/BF16/F16/INT8
processor 指定模型将要用到的平台
calibration_table 指定量化表路径,当存在INT8量化的时候需要量化表
tolerance 表示 MLIR 量化后的结果与 MLIR fp32推理结果相似度的误差容忍度
correctnetss 表示仿真器运行的结果与MLIR量化后的结果相似度的误差容忍度,默认0.99,0.99
excepts 指定需要排除验证的网络层的名称,多个用,隔开
debug 指定后保留中间临时文件;否则会清理掉中间临时文件
model 指定输出的model文件路径
dynamic 动态编译,支持动态shape

MLIR转INT8模型

转INT8模型前需要跑calibration,得到量化表;输入数据的数量根据情况准备100~1000张左右。

然后用量化表,生成对称或非对称bmodel。如果对称符合需求,一般不建议用非对称,因为非对称的性能会略差与对称模型。

这里用现有的100张来自COCO2017的图片举例,执行calibration:

run_calibration.py yolov5s.mlir \
  --dataset ../COCO2017 \
  --input_num 100 \
  -o yolov5s_cali_table

转成INT8对称量化模型,执行如下命令:

model_deploy.py \
  --mlir yolov5s.mlir \
  --quantize INT8 \
  --calibration_table yolov5s_cali_table \
  --processor bm1684x \
  --test_input yolov5s_in_f32.npz \
  --test_reference yolov5s_top_outputs.npz \
  --tolerance 0.85,0.45 \
  --model yolov5s_1684x_int8.bmodel

效果对比

本工程有用python写好的yolov5用例,源码路径python/samples/detect_yolov5.py,用于对图片进行目标检测。阅读该代码可以了解模型是如何使用的:先预处理得到模型的输入,然后推理得到输出,最后做后处理。以下用该代码分别来验证onnx/f32/int8的执行结果。

onnx模型的执行方式如下,得到dog_onnx.jpg

detect_yolov5.py \
  --input ../image/dog.jpg \
  --model ../yolov5s.onnx \
  --output dog_onnx.jpg

f16 bmodel的执行方式如下,得到dog_f16.jpg

detect_yolov5.py \
  --input ../image/dog.jpg \
  --model yolov5s_1684x_f16.bmodel \
  --output dog_f16.jpg

int8 对称bmodel的执行方式如下,得到dog_int8_sym.jpg:

detect_yolov5.py \
  --input ../image/dog.jpg \
  --model yolov5s_1684x_int8.bmodel \
  --output dog_int8.jpg

三张图片对比如下:

辅助工具

模型推理工具model_runner.py

支持 bmodel/mlir/onnx/tflite

model_runner.py \
  --input resnet18_in_f32.npz \
  --model resnet18_1684x_f32.bmodel \
  --output resnet18_output.npz

bmodel模型工具

可以通过model_tool工具来查看和编辑bmodel文件, 用法参考以下列表:

  model_tool
    --info model_file : show brief model info
    --print model_file : show detailed model info
    --extract model_file : extract one multi-net bmodel to multi one-net bmodels
    --combine file1 .. fileN -o new_file: combine bmodels to one bmodel by filepath
    --combine_dir dir1 .. dirN -o new_dir: combine bmodels to one bmodel by directory path
    --dump model_file start_offset byte_size out_file: dump binary data to file from bmodel

例如, 获取bmodel的基本信息:

model_tool --info resnet18_1684x_f32.bmodel

相关链接