Skip to content

Latest commit

 

History

History
82 lines (80 loc) · 7.11 KB

README.md

File metadata and controls

82 lines (80 loc) · 7.11 KB
模型名字 模型ID 调用接口
yolov3.cvimodel CVI_TDL_SUPPORTED_MODEL_YOLOV3 CVI_TDL_Detection
yolov5m.cvimodel CVI_TDL_SUPPORTED_MODEL_YOLOV5 CVI_TDL_Detection
yolov5s.cvimodel CVI_TDL_SUPPORTED_MODEL_YOLOV5 CVI_TDL_Detection
yolov6m.cvimodel CVI_TDL_SUPPORTED_MODEL_YOLOV6 CVI_TDL_Detection
yolov6s.cvimodel CVI_TDL_SUPPORTED_MODEL_YOLOV6 CVI_TDL_Detection
yolox_m.cvimodel CVI_TDL_SUPPORTED_MODEL_YOLOX CVI_TDL_Detection
yolox_s.cvimodel CVI_TDL_SUPPORTED_MODEL_YOLOX CVI_TDL_Detection
yolov7-tiny.cvimodel CVI_TDL_SUPPORTED_MODEL_YOLOV7 CVI_TDL_Detection
yolov8n.cvimodel CVI_TDL_SUPPORTED_MODEL_YOLOV8_DETECTION CVI_TDL_Detection
yolov8s.cvimodel CVI_TDL_SUPPORTED_MODEL_YOLOV8_DETECTION CVI_TDL_Detection
ppyoloe.cvimodel CVI_TDL_SUPPORTED_MODEL_PPYOLOE CVI_TDL_Detection
yolov10n.cvimodel CVI_TDL_SUPPORTED_MODEL_YOLOV10_DETECTION CVI_TDL_Detection
hardhat_detection_v2.cvimodel CVI_TDL_SUPPORTED_MODEL_YOLOV8_HARDHAT CVI_TDL_Detection
hand_det_qat_640x384.cvimodel CVI_TDL_SUPPORTED_MODEL_HAND_DETECTION CVI_TDL_Detection
pet_det_640x384.cvimodel CVI_TDL_SUPPORTED_MODEL_PERSON_PETS_DETECTION CVI_TDL_Detection
yolov8n_384_640_person_vehicle.cvimodel CVI_TDL_SUPPORTED_MODEL_PERSON_VEHICLE_DETECTION CVI_TDL_Detection
meeting_det_640x384.cvimodel CVI_TDL_SUPPORTED_MODEL_HAND_FACE_PERSON_DETECTION CVI_TDL_Detection
yolov8n_headperson.cvimodel CVI_TDL_SUPPORTED_MODEL_HEAD_PERSON_DETECTION CVI_TDL_Detection
mobiledetv2-d0-ls.cvimodel CVI_TDL_SUPPORTED_MODEL_MOBILEDETV2_COCO80 CVI_TDL_Detection
mobiledetv2-d1-ls.cvimodel CVI_TDL_SUPPORTED_MODEL_MOBILEDETV2_COCO80 CVI_TDL_Detection
mobiledetv2-d2-ls.cvimodel CVI_TDL_SUPPORTED_MODEL_MOBILEDETV2_COCO80 CVI_TDL_Detection
mobiledetv2-vehicle-d0-ls.cvimode CVI_TDL_SUPPORTED_MODEL_MOBILEDETV2_VEHICLE CVI_TDL_Detection
mobiledetv2-pedestrian-d0-ls-384.cvimodel CVI_TDL_SUPPORTED_MODEL_MOBILEDETV2_PEDESTRIAN CVI_TDL_Detection
mobiledetv2-pedestrian-d0-ls-448.cvimodel CVI_TDL_SUPPORTED_MODEL_MOBILEDETV2_PEDESTRIAN CVI_TDL_Detection
mobiledetv2-pedestrian-d0-ls-640.cvimodel CVI_TDL_SUPPORTED_MODEL_MOBILEDETV2_PEDESTRIAN CVI_TDL_Detection
mobiledetv2-pedestrian-d0-ls-768.cvimodel CVI_TDL_SUPPORTED_MODEL_MOBILEDETV2_PEDESTRIAN CVI_TDL_Detection
mobiledetv2-pedestrian-d1-ls.cvimodel CVI_TDL_SUPPORTED_MODEL_MOBILEDETV2_PEDESTRIAN CVI_TDL_Detection
mobiledetv2-pedestrian-d1-ls-1024.cvimodel CVI_TDL_SUPPORTED_MODEL_MOBILEDETV2_PEDESTRIAN CVI_TDL_Detection
retinaface_mnet0.25_342_608.cvimodel CVI_TDL_SUPPORTED_MODEL_RETINAFACE CVI_TDL_FaceDetection
retinaface_mnet0.25_608_342.cvimodel CVI_TDL_SUPPORTED_MODEL_RETINAFACE CVI_TDL_FaceDetection
retinaface_mnet0.25_608.cvimodel CVI_TDL_SUPPORTED_MODEL_RETINAFACE CVI_TDL_FaceDetection
scrfd_320_256_ir.cvimodel CVI_TDL_SUPPORTED_MODEL_SCRFDFACE CVI_TDL_FaceDetection
scrfd_480_270_int8.cvimodel CVI_TDL_SUPPORTED_MODEL_SCRFDFACE CVI_TDL_FaceDetection
scrfd_480_360_int8.cvimodel CVI_TDL_SUPPORTED_MODEL_SCRFDFACE CVI_TDL_FaceDetection
scrfd_500m_bnkps_432_768.cvimodel CVI_TDL_SUPPORTED_MODEL_SCRFDFACE CVI_TDL_FaceDetection
retinafaceIR_mnet0.25_342_608.cvimodel CVI_TDL_SUPPORTED_MODEL_RETINAFACE_IR CVI_TDL_FaceDetection
retinafaceIR_mnet0.25_608_342.cvimodel CVI_TDL_SUPPORTED_MODEL_RETINAFACE_IR CVI_TDL_FaceDetection
retinafaceIR_mnet0.25_608_608.cvimodel CVI_TDL_SUPPORTED_MODEL_RETINAFACE_IR CVI_TDL_FaceDetection
retinaface_yolox_fdmask.cvimodel CVI_TDL_SUPPORTED_MODEL_FACEMASKDETECTION CVI_TDL_FaceDetection
pipnet_blurness_v5_64_retinaface_50ep.cvimodel CVI_TDL_SUPPORTED_MODEL_FACELANDMARKERDET2 CVI_TDL_FaceLandmarkerDet2
fqnet-v5_shufflenetv2-softmax.cvimodel CVI_TDL_SUPPORTED_MODEL_FACEQUALITY CVI_TDL_FaceQuality
mask_classifier.cvimodel CVI_TDL_SUPPORTED_MODEL_MASKCLASSIFICATION CVI_TDL_MaskClassification
cviface-v5-m.cvimodel CVI_TDL_SUPPORTED_MODEL_FACERECOGNITION CVI_TDL_FaceRecognition
cviface-v6-s.cvimodel CVI_TDL_SUPPORTED_MODEL_FACERECOGNITION CVI_TDL_FaceRecognition
face_attr_112_112.cvimodel CVI_TDL_SUPPORTED_MODEL_FACEATTRIBUTE_CLS CVI_TDL_FaceAttribute_cls
hand_cls_128x128.cvimodel CVI_TDL_SUPPORTED_MODEL_HANDCLASSIFICATION CVI_TDL_HandClassification
hand_kpt_128x128.cvimodel CVI_TDL_SUPPORTED_MODEL_HAND_KEYPOINT CVI_TDL_HandKeypoint
hand_kpt_cls9.cvimodel CVI_TDL_SUPPORTED_MODEL_HAND_KEYPOINT_CLASSIFICATION CVI_TDL_HandKeypointClassification
wpodnet_v0_bf16.cvimodel CVI_TDL_SUPPORTED_MODEL_WPODNET CVI_TDL_LicensePlateDetection
lprnet_v0_tw_bf16.cvimodel CVI_TDL_SUPPORTED_MODEL_LPRNET_TW CVI_TDL_LicensePlateDetection_TW
lprnet_v1_cn_bf16.cvimodel CVI_TDL_SUPPORTED_MODEL_LPRNET_CN CVI_TDL_LicensePlateDetection_CN
ir_liveness.cvimodel CVI_TDL_IrLiveness CVI_TDL_SUPPORTED_MODEL_IRLIVENESS
yolov8n_pose_384_640.cvimodel CVI_TDL_SUPPORTED_MODEL_YOLOV8POSE CVI_TDL_PoseDetection
simcc_mv2_pose.cvimodel CVI_TDL_SUPPORTED_MODEL_SIMCC_POSE CVI_TDL_PoseDetection
yolov8n_seg.cvimodel CVI_TDL_SUPPORTED_MODEL_YOLOV8_SEG CVI_TDL_YoloV8_Seg
face_landmark_bf16.cvimodel CVI_TDL_FaceLandmarker CVI_TDL_SUPPORTED_MODEL_FACELANDMARKER
eye_v1_bf16.cvimodel CVI_TDL_EyeClassification CVI_TDL_SUPPORTED_MODEL_EYECLASSIFICATION
yawn_v1_bf16.cvimodel CVI_TDL_YawnClassification CVI_TDL_SUPPORTED_MODEL_YAWNCLASSIFICATION
c10_lightv2_mse40_mix.cvimodel CVI_TDL_SUPPORTED_MODEL_SOUNDCLASSIFICATION CVI_TDL_SoundClassification
模型名字 ION/FlASH 推理耗时(ms) 模型性能
c10_lightv2_mse40_mix.cvimodel 0.62 MB/587KB 3.12 Acc: 98.9%
cviface-v6-s.cvimodel 2.97 MB/2.36MB 7.96 FMR:0.1 FNMR:0.0141
hand_det_qat_640x384.cvimodel 2.82MB/913KB 16.6 mAP(0.5): 82.1%
hand_kpt_128x128.cvimodel 0.84MB/809KB 0.829 [email protected]:0.886
hand_kpt_cls9.cvimodel 0.05MB/54KB 0.255 Acc: 91.0%
hardhat_detection_v2.cvimodel 7.48MB/1.05MB 38.4 mAP(0.5)=92.42%
mask_classifier.cvimodel 3.11MB/2. 30MB 4.88 Acc: 97.2%
mobiledetv2-pedestrian-d0-ls-448.cvimodel 2.12MB/441KB 10.3 mAP(0.5): 66.4%
pet_det_640x384.cvimodel 6.5MB/2.99MB 32.8 mAP(0.5):87.0%
ppyoloe.cvimodel 14.55MB/8.9MB 101.15 mAP(0.5): 55.4%
scrfd_768_432_int8_1x.cvimodel 4.50 MB/742KB 10.9 mAP(0.5):easy: 89.4% medium: 86.5% hard:65.9%
yolov7-tiny.cvimodel 70.66MB/7.7MB 70.41 mAP(0.5): 53.4%
yolov8n_384_640_person_vehicle.cvimodel 5.58 MB/3.13M 28.5 mAP(0.5):72.0%
yolov8n.cvimodel 31.56MB/3.5MB 45.62 mAP(0.5): 51.2%
yolov8n_headperson.cvimodel 5.29M/3.13M 26.5 mAP(0.5): 78.5%
yolox_s.cvimodel 95.44MB/10.0MB 127.91 mAP(0.5): 52.4%
模型评测信息待更新