-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinteraction_head.py
367 lines (318 loc) · 13.5 KB
/
interaction_head.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import torch
import torch.nn.functional as F
from torch import nn, Tensor
from typing import List, Optional, Tuple
from collections import OrderedDict
import pocket
from ops import compute_spatial_encodings
class MultiBranchFusion(nn.Module):
"""
Multi-branch fusion module
Parameters:
-----------
appearance_size: int
Size of the appearance features
spatial_size: int
Size of the spatial features
hidden_state_size: int
Size of the intermediate representations
cardinality: int
The number of homogeneous branches
"""
def __init__(self,
appearance_size: int, spatial_size: int,
hidden_state_size: int, cardinality: int
) -> None:
super().__init__()
self.cardinality = cardinality
sub_repr_size = int(hidden_state_size / cardinality)
assert sub_repr_size * cardinality == hidden_state_size, \
"The given representation size should be divisible by cardinality"
self.fc_1 = nn.ModuleList([
nn.Linear(appearance_size, sub_repr_size)
for _ in range(cardinality)
])
self.fc_2 = nn.ModuleList([
nn.Linear(spatial_size, sub_repr_size)
for _ in range(cardinality)
])
self.fc_3 = nn.ModuleList([
nn.Linear(sub_repr_size, hidden_state_size)
for _ in range(cardinality)
])
def forward(self, appearance: Tensor, spatial: Tensor) -> Tensor:
return F.relu(torch.stack([
fc_3(F.relu(fc_1(appearance) * fc_2(spatial)))
for fc_1, fc_2, fc_3
in zip(self.fc_1, self.fc_2, self.fc_3)
]).sum(dim=0))
class ModifiedEncoderLayer(nn.Module):
def __init__(self,
hidden_size: int = 256, representation_size: int = 512,
num_heads: int = 8, dropout_prob: float = .1, return_weights: bool = False,
) -> None:
super().__init__()
if representation_size % num_heads != 0:
raise ValueError(
f"The given representation size {representation_size} "
f"should be divisible by the number of attention heads {num_heads}."
)
self.sub_repr_size = int(representation_size / num_heads)
self.hidden_size = hidden_size
self.representation_size = representation_size
self.num_heads = num_heads
self.return_weights = return_weights
self.unary = nn.Linear(hidden_size, representation_size)
self.pairwise = nn.Linear(representation_size, representation_size)
self.attn = nn.ModuleList([nn.Linear(3 * self.sub_repr_size, 1) for _ in range(num_heads)])
self.message = nn.ModuleList([nn.Linear(self.sub_repr_size, self.sub_repr_size) for _ in range(num_heads)])
self.aggregate = nn.Linear(representation_size, hidden_size)
self.norm = nn.LayerNorm(hidden_size)
self.dropout = nn.Dropout(dropout_prob)
self.ffn = pocket.models.FeedForwardNetwork(hidden_size, hidden_size * 4, dropout_prob)
def reshape(self, x: Tensor) -> Tensor:
new_x_shape = x.size()[:-1] + (
self.num_heads,
self.sub_repr_size
)
x = x.view(*new_x_shape)
if len(new_x_shape) == 3:
return x.permute(1, 0, 2)
elif len(new_x_shape) == 4:
return x.permute(2, 0, 1, 3)
else:
raise ValueError("Incorrect tensor shape")
def forward(self, x: Tensor, y: Tensor) -> Tuple[Tensor, Optional[Tensor]]:
device = x.device
n = len(x)
u = F.relu(self.unary(x))
p = F.relu(self.pairwise(y))
# Unary features (H, N, L)
u_r = self.reshape(u)
# Pairwise features (H, N, N, L)
p_r = self.reshape(p)
i, j = torch.meshgrid(
torch.arange(n, device=device),
torch.arange(n, device=device)
)
# Features used to compute attention (H, N, N, 3L)
attn_features = torch.cat([
u_r[:, i], u_r[:, j], p_r
], dim=-1)
# Attention weights (H,) (N, N, 1)
weights = [
F.softmax(l(f), dim=0) for f, l
in zip(attn_features, self.attn)
]
# Repeated unary feaures along the third dimension (H, N, N, L)
u_r_repeat = u_r.unsqueeze(dim=2).repeat(1, 1, n, 1)
messages = [
l(f_1 * f_2) for f_1, f_2, l
in zip(u_r_repeat, p_r, self.message)
]
aggregated_messages = self.aggregate(F.relu(
torch.cat([
(w * m).sum(dim=0) for w, m
in zip(weights, messages)
], dim=-1)
))
aggregated_messages = self.dropout(aggregated_messages)
x = self.norm(x + aggregated_messages)
x = self.ffn(x)
if self.return_weights: attn = weights
else: attn = None
return x, attn
class ModifiedEncoder(nn.Module):
def __init__(self,
hidden_size: int = 256, representation_size: int = 512,
num_heads: int = 8, num_layers: int = 2,
dropout_prob: float = .1, return_weights: bool = False,
) -> None:
super().__init__()
self.num_layers = num_layers
self.mod_enc = nn.ModuleList([ModifiedEncoderLayer(
hidden_size=hidden_size, representation_size=representation_size,
num_heads=num_heads, dropout_prob=dropout_prob, return_weights=return_weights
) for _ in range(num_layers)])
def forward(self, x: Tensor, y: Tensor) -> Tuple[Tensor, List[Optional[Tensor]]]:
attn_weights = []
for layer in self.mod_enc:
x, attn = layer(x, y)
attn_weights.append(attn)
return x, attn_weights
class InteractionHead(nn.Module):
"""
Interaction head that constructs and classifies box pairs
Parameters:
-----------
box_pair_predictor: nn.Module
Module that classifies box pairs
hidden_state_size: int
Size of the object features
representation_size: int
Size of the human-object pair features
num_channels: int
Number of channels in the global image features
num_classes: int
Number of target classes
human_idx: int
The index of human/person class
object_class_to_target_class: List[list]
The set of valid action classes for each object type
"""
def __init__(self,
box_pair_predictor: nn.Module,
hidden_state_size: int, representation_size: int,
num_channels: int, num_classes: int, human_idx: int,
object_class_to_target_class: List[list]
) -> None:
super().__init__()
self.box_pair_predictor = box_pair_predictor
self.hidden_state_size = hidden_state_size
self.representation_size = representation_size
self.num_classes = num_classes
self.human_idx = human_idx
self.object_class_to_target_class = object_class_to_target_class
# Map spatial encodings to the same dimension as appearance features
self.spatial_head = nn.Sequential(
nn.Linear(36, 128),
nn.ReLU(),
nn.Linear(128, 256),
nn.ReLU(),
nn.Linear(256, representation_size),
nn.ReLU(),
)
self.coop_layer = ModifiedEncoder(
hidden_size=hidden_state_size,
representation_size=representation_size,
num_layers=2,
return_weights=True
)
self.comp_layer = pocket.models.TransformerEncoderLayer(
hidden_size=representation_size * 2,
return_weights=True
)
self.mbf = MultiBranchFusion(
hidden_state_size * 2,
representation_size, representation_size,
cardinality=16
)
self.avg_pool = nn.AdaptiveAvgPool2d(output_size=1)
self.mbf_g = MultiBranchFusion(
num_channels, representation_size,
representation_size, cardinality=16
)
def compute_prior_scores(self,
x: Tensor, y: Tensor, scores: Tensor, object_class: Tensor
) -> Tensor:
prior_h = torch.zeros(len(x), self.num_classes, device=scores.device)
prior_o = torch.zeros_like(prior_h)
# Raise the power of object detection scores during inference
p = 1.0 if self.training else 2.8
s_h = scores[x].pow(p)
s_o = scores[y].pow(p)
# Map object class index to target class index
# Object class index to target class index is a one-to-many mapping
target_cls_idx = [self.object_class_to_target_class[obj.item()]
for obj in object_class[y]]
# Duplicate box pair indices for each target class
pair_idx = [i for i, tar in enumerate(target_cls_idx) for _ in tar]
# Flatten mapped target indices
flat_target_idx = [t for tar in target_cls_idx for t in tar]
prior_h[pair_idx, flat_target_idx] = s_h[pair_idx]
prior_o[pair_idx, flat_target_idx] = s_o[pair_idx]
return torch.stack([prior_h, prior_o])
def forward(self, features: OrderedDict, image_shapes: Tensor, region_props: List[dict]):
"""
Parameters:
-----------
features: OrderedDict
Feature maps returned by FPN
image_shapes: Tensor
(B, 2) Image shapes, heights followed by widths
region_props: List[dict]
Region proposals with the following keys
`boxes`: Tensor
(N, 4) Bounding boxes
`scores`: Tensor
(N,) Object confidence scores
`labels`: Tensor
(N,) Object class indices
`hidden_states`: Tensor
(N, 256) Object features
"""
device = features.device
global_features = self.avg_pool(features).flatten(start_dim=1)
boxes_h_collated = []; boxes_o_collated = []
prior_collated = []; object_class_collated = []
pairwise_tokens_collated = []
attn_maps_collated = []
for b_idx, props in enumerate(region_props):
boxes = props['boxes']
scores = props['scores']
labels = props['labels']
unary_tokens = props['hidden_states']
is_human = labels == self.human_idx
n_h = torch.sum(is_human); n = len(boxes)
# Permute human instances to the top
if not torch.all(labels[:n_h]==self.human_idx):
h_idx = torch.nonzero(is_human).squeeze(1)
o_idx = torch.nonzero(is_human == 0).squeeze(1)
perm = torch.cat([h_idx, o_idx])
boxes = boxes[perm]; scores = scores[perm]
labels = labels[perm]; unary_tokens = unary_tokens[perm]
# Skip image when there are no valid human-object pairs
if n_h == 0 or n <= 1:
pairwise_tokens_collated.append(torch.zeros(
0, 2 * self.representation_size,
device=device)
)
boxes_h_collated.append(torch.zeros(0, device=device, dtype=torch.int64))
boxes_o_collated.append(torch.zeros(0, device=device, dtype=torch.int64))
object_class_collated.append(torch.zeros(0, device=device, dtype=torch.int64))
prior_collated.append(torch.zeros(2, 0, self.num_classes, device=device))
continue
# Get the pairwise indices
x, y = torch.meshgrid(
torch.arange(n, device=device),
torch.arange(n, device=device)
)
# Valid human-object pairs
x_keep, y_keep = torch.nonzero(torch.logical_and(x != y, x < n_h)).unbind(1)
if len(x_keep) == 0:
# Should never happen, just to be safe
raise ValueError("There are no valid human-object pairs")
x = x.flatten(); y = y.flatten()
# Compute spatial features
box_pair_spatial = compute_spatial_encodings(
[boxes[x]], [boxes[y]], [image_shapes[b_idx]]
)
box_pair_spatial = self.spatial_head(box_pair_spatial)
# Reshape the spatial features
box_pair_spatial_reshaped = box_pair_spatial.reshape(n, n, -1)
# Run the cooperative layer
unary_tokens, unary_attn = self.coop_layer(unary_tokens, box_pair_spatial_reshaped)
# Generate pairwise tokens with MBF
pairwise_tokens = torch.cat([
self.mbf(
torch.cat([unary_tokens[x_keep], unary_tokens[y_keep]], 1),
box_pair_spatial_reshaped[x_keep, y_keep]
), self.mbf_g(
global_features[b_idx, None],
box_pair_spatial_reshaped[x_keep, y_keep])
], dim=1)
# Run the competitive layer
pairwise_tokens, pairwise_attn = self.comp_layer(pairwise_tokens)
pairwise_tokens_collated.append(pairwise_tokens)
boxes_h_collated.append(x_keep)
boxes_o_collated.append(y_keep)
object_class_collated.append(labels[y_keep])
# The prior score is the product of the object detection scores
prior_collated.append(self.compute_prior_scores(
x_keep, y_keep, scores, labels)
)
attn_maps_collated.append((unary_attn, pairwise_attn))
pairwise_tokens_collated = torch.cat(pairwise_tokens_collated)
logits = self.box_pair_predictor(pairwise_tokens_collated)
return logits, prior_collated, \
boxes_h_collated, boxes_o_collated, object_class_collated, attn_maps_collated