-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvariant_2_cnn_finetune_separate.py
254 lines (198 loc) · 8.36 KB
/
variant_2_cnn_finetune_separate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import torch
from torch import nn as nn
import os
from torch.utils.data import DataLoader
from torch.nn import functional as F
from torch import cuda
from sklearn import metrics
import numpy as np
from transformers import AdamW
from transformers import get_scheduler
from entities import VariantThreeFineTuneOnlyDataset
from model import VariantThreeFineTuneOnlyClassifier
from pytorchtools import EarlyStopping
import pandas as pd
from tqdm import tqdm
import utils
from transformers import RobertaTokenizer
import preprocess_variant_3
import preprocess_variant_1
dataset_name = 'ase_dataset_sept_19_2021.csv'
# dataset_name = 'huawei_sub_dataset.csv'
directory = os.path.dirname(os.path.abspath(__file__))
model_folder_path = os.path.join(directory, 'model')
FINE_TUNED_MODEL_PATH = 'model/patch_variant_2_cnn_finetuned_model.sav'
FINETUNE_EPOCH = 1
NUMBER_OF_EPOCHS = 1
EARLY_STOPPING_ROUND = 5
TRAIN_BATCH_SIZE = 8
VALIDATION_BATCH_SIZE = 128
TEST_BATCH_SIZE = 128
TRAIN_PARAMS = {'batch_size': TRAIN_BATCH_SIZE, 'shuffle': True, 'num_workers': 8}
VALIDATION_PARAMS = {'batch_size': VALIDATION_BATCH_SIZE, 'shuffle': True, 'num_workers': 8}
TEST_PARAMS = {'batch_size': TEST_BATCH_SIZE, 'shuffle': True, 'num_workers': 8}
LEARNING_RATE = 1e-5
use_cuda = cuda.is_available()
device = torch.device("cuda:0" if use_cuda else "cpu")
torch.backends.cudnn.benchmark = True
false_cases = []
CODE_LENGTH = 256
HIDDEN_DIM = 768
NUMBER_OF_LABELS = 2
def train(model, learning_rate, number_of_epochs, training_generator):
loss_function = nn.NLLLoss()
optimizer = AdamW(model.parameters(), lr=learning_rate)
num_training_steps = NUMBER_OF_EPOCHS * len(training_generator)
lr_scheduler = get_scheduler(
"linear",
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=num_training_steps
)
train_losses = []
for epoch in range(number_of_epochs):
model.train()
total_loss = 0
current_batch = 0
for index, (id_batch, url_batch, input_batch, mask_batch, label_batch) in enumerate(training_generator):
input_batch, mask_batch, label_batch \
= input_batch.to(device), mask_batch.to(device), label_batch.to(device)
outs = model(input_batch, mask_batch)
outs = F.log_softmax(outs, dim=1)
loss = loss_function(outs, label_batch)
train_losses.append(loss.item())
model.zero_grad()
loss.backward()
optimizer.step()
lr_scheduler.step()
total_loss += loss.detach().item()
current_batch += 1
if current_batch % 50 == 0:
print("Train commit iter {}, commit {}/{} total loss {}, average loss {}"
.format(current_batch, (index + 1) * TRAIN_BATCH_SIZE, len(training_generator) * TRAIN_BATCH_SIZE, np.sum(train_losses), np.average(train_losses)))
print("epoch {}, training commit loss {}".format(epoch, np.sum(train_losses)))
torch.save(model.state_dict(), FINE_TUNED_MODEL_PATH)
# if epoch + 1 == FINETUNE_EPOCH:
# torch.save(model.state_dict(), FINE_TUNED_MODEL_PATH)
# if not isinstance(model, nn.DataParallel):
# model.freeze_codebert()
# else:
# model.module.freeze_codebert()
return model
def get_data():
print("Reading dataset...")
df = pd.read_csv(dataset_name)
df = df[['commit_id', 'repo', 'partition', 'diff', 'label', 'PL', 'LOC_MOD', 'filename']]
items = df.to_numpy().tolist()
url_to_diff = {}
url_to_partition = {}
url_to_label = {}
url_to_pl = {}
for item in items:
commit_id = item[0]
repo = item[1]
url = repo + '/commit/' + commit_id
partition = item[2]
diff = item[3]
label = item[4]
pl = item[5]
if url not in url_to_diff:
url_to_diff[url] = []
url_to_diff[url].append(diff)
url_to_partition[url] = partition
url_to_label[url] = label
url_to_pl[url] = pl
patch_train, patch_val, patch_test_java, patch_test_python = [], [], [], []
label_train, label_val, label_test_java, label_test_python = [], [], [], []
url_train, url_val, url_test_java, url_test_python = [], [], [], []
for key in url_to_diff.keys():
url = key
diff = url_to_diff[key]
label = url_to_label[key]
partition = url_to_partition[key]
pl = url_to_pl[key]
if partition == 'train':
patch_train.append(diff)
label_train.append(label)
url_train.append(url)
elif partition == 'test':
if pl == 'java':
patch_test_java.append(diff)
label_test_java.append(label)
url_test_java.append(url)
elif pl == 'python':
patch_test_python.append(diff)
label_test_python.append(label)
url_test_python.append(url)
else:
raise Exception("Invalid programming language: {}".format(partition))
elif partition == 'val':
patch_val.append(diff)
label_val.append(label)
url_val.append(url)
else:
raise Exception("Invalid partition: {}".format(partition))
print("Finish reading dataset")
patch_data = {'train': patch_train, 'val': patch_val,
'test_java': patch_test_java, 'test_python': patch_test_python}
label_data = {'train': label_train, 'val': label_val,
'test_java': label_test_java, 'test_python': label_test_python}
url_data = {'train': url_train, 'val': url_val,
'test_java': url_test_java, 'test_python': url_test_python}
return patch_data, label_data, url_data
def get_input_and_mask(tokenizer, code):
inputs = tokenizer(code, padding='max_length', max_length=CODE_LENGTH, truncation=True, return_tensors="pt")
return inputs.data['input_ids'], inputs.data['attention_mask']
def retrieve_patch_data(all_data, all_label, all_url):
tokenizer = RobertaTokenizer.from_pretrained("microsoft/codebert-base")
print("Preparing tokenizer data...")
id_to_label = {}
id_to_url = {}
id_to_input = {}
id_to_mask = {}
index = 0
for i, file_list in tqdm(enumerate(all_data)):
code_list = []
for count, file in enumerate(file_list):
added_code = preprocess_variant_1.get_code_version(diff=file, added_version=True)
removed_code = preprocess_variant_1.get_code_version(diff=file, added_version=False)
code = added_code + tokenizer.sep_token + removed_code
code_list.append(code)
input_ids_list, mask_list = get_input_and_mask(tokenizer, code_list)
for j in range(len(input_ids_list)):
id_to_input[index] = input_ids_list[j]
id_to_mask[index] = mask_list[j]
id_to_label[index] = all_label[i]
id_to_url[index] = all_url[i]
index += 1
return id_to_input, id_to_mask, id_to_label, id_to_url
def do_train():
print("Dataset name: {}".format(dataset_name))
print("Saving finetuned model to: {}".format(FINE_TUNED_MODEL_PATH))
patch_data, label_data, url_data = get_data()
train_ids, val_ids, test_java_ids, test_python_ids = [], [], [], []
index = 0
for i, file_list in enumerate((patch_data['train'])):
for j in range(len(file_list)):
train_ids.append(index)
index += 1
all_data = patch_data['train']
all_label = label_data['train']
all_url = url_data['train']
print("Preparing commit patch data...")
id_to_input, id_to_mask, id_to_label, id_to_url = retrieve_patch_data(all_data, all_label, all_url)
print("Finish preparing commit patch data")
training_set = VariantThreeFineTuneOnlyDataset(train_ids, id_to_label, id_to_url, id_to_input, id_to_mask)
training_generator = DataLoader(training_set, **TRAIN_PARAMS)
model = VariantThreeFineTuneOnlyClassifier()
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
model = nn.DataParallel(model)
model.to(device)
train(model=model,
learning_rate=LEARNING_RATE,
number_of_epochs=NUMBER_OF_EPOCHS,
training_generator=training_generator)
if __name__ == '__main__':
do_train()