-
Notifications
You must be signed in to change notification settings - Fork 69
/
AdjacencyMap.hs
717 lines (636 loc) · 25.4 KB
/
AdjacencyMap.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
-----------------------------------------------------------------------------
-- |
-- Module : Algebra.Graph.NonEmpty.AdjacencyMap
-- Copyright : (c) Andrey Mokhov 2016-2023
-- License : MIT (see the file LICENSE)
-- Maintainer : [email protected]
-- Stability : experimental
--
-- __Alga__ is a library for algebraic construction and manipulation of graphs
-- in Haskell. See <https://github.com/snowleopard/alga-paper this paper> for the
-- motivation behind the library, the underlying theory, and implementation details.
--
-- This module defines the data type 'AdjacencyMap' for graphs that are known
-- to be non-empty at compile time. To avoid name clashes with
-- "Algebra.Graph.AdjacencyMap", this module can be imported qualified:
--
-- @
-- import qualified Algebra.Graph.NonEmpty.AdjacencyMap as NonEmpty
-- @
--
-- The naming convention generally follows that of "Data.List.NonEmpty": we use
-- suffix @1@ to indicate the functions whose interface must be changed compared
-- to "Algebra.Graph.AdjacencyMap", e.g. 'vertices1'.
-----------------------------------------------------------------------------
module Algebra.Graph.NonEmpty.AdjacencyMap (
-- * Data structure
AdjacencyMap, toNonEmpty, fromNonEmpty,
-- * Basic graph construction primitives
vertex, edge, overlay, connect, vertices1, edges1, overlays1, connects1,
-- * Relations on graphs
isSubgraphOf,
-- * Graph properties
hasVertex, hasEdge, vertexCount, edgeCount, vertexList1, edgeList,
vertexSet, edgeSet, preSet, postSet,
-- * Standard families of graphs
path1, circuit1, clique1, biclique1, star, stars1, tree,
-- * Graph transformation
removeVertex1, removeEdge, replaceVertex, mergeVertices, transpose, gmap,
induce1, induceJust1,
-- * Graph closure
closure, reflexiveClosure, symmetricClosure, transitiveClosure,
-- * Miscellaneous
consistent
) where
import Prelude hiding (reverse)
import Control.DeepSeq
import Data.Coerce
import Data.List ((\\))
import Data.List.NonEmpty (NonEmpty (..), nonEmpty, toList, reverse)
import Data.Maybe
import Data.Set (Set)
import Data.String
import Data.Tree
import GHC.Generics
import qualified Algebra.Graph.AdjacencyMap as AM
import qualified Data.Set as Set
{-| The 'AdjacencyMap' data type represents a graph by a map of vertices to
their adjacency sets. We define a 'Num' instance as a convenient notation for
working with graphs:
@
0 == 'vertex' 0
1 + 2 == 'overlay' ('vertex' 1) ('vertex' 2)
1 * 2 == 'connect' ('vertex' 1) ('vertex' 2)
1 + 2 * 3 == 'overlay' ('vertex' 1) ('connect' ('vertex' 2) ('vertex' 3))
1 * (2 + 3) == 'connect' ('vertex' 1) ('overlay' ('vertex' 2) ('vertex' 3))
@
__Note:__ the 'signum' method of the type class 'Num' cannot be implemented and
will throw an error. Furthermore, the 'Num' instance does not satisfy several
"customary laws" of 'Num', which dictate that 'fromInteger' @0@ and
'fromInteger' @1@ should act as additive and multiplicative identities, and
'negate' as additive inverse. Nevertheless, overloading 'fromInteger', '+' and
'*' is very convenient when working with algebraic graphs; we hope that in
future Haskell's Prelude will provide a more fine-grained class hierarchy for
algebraic structures, which we would be able to utilise without violating any
laws.
The 'Show' instance is defined using basic graph construction primitives:
@show (1 :: AdjacencyMap Int) == "vertex 1"
show (1 + 2 :: AdjacencyMap Int) == "vertices1 [1,2]"
show (1 * 2 :: AdjacencyMap Int) == "edge 1 2"
show (1 * 2 * 3 :: AdjacencyMap Int) == "edges1 [(1,2),(1,3),(2,3)]"
show (1 * 2 + 3 :: AdjacencyMap Int) == "overlay (vertex 3) (edge 1 2)"@
The 'Eq' instance satisfies the following laws of algebraic graphs:
* 'overlay' is commutative, associative and idempotent:
> x + y == y + x
> x + (y + z) == (x + y) + z
> x + x == x
* 'connect' is associative:
> x * (y * z) == (x * y) * z
* 'connect' distributes over 'overlay':
> x * (y + z) == x * y + x * z
> (x + y) * z == x * z + y * z
* 'connect' can be decomposed:
> x * y * z == x * y + x * z + y * z
* 'connect' satisfies absorption and saturation:
> x * y + x + y == x * y
> x * x * x == x * x
When specifying the time and memory complexity of graph algorithms, /n/ and /m/
will denote the number of vertices and edges in the graph, respectively.
The total order on graphs is defined using /size-lexicographic/ comparison:
* Compare the number of vertices. In case of a tie, continue.
* Compare the sets of vertices. In case of a tie, continue.
* Compare the number of edges. In case of a tie, continue.
* Compare the sets of edges.
Here are a few examples:
@'vertex' 1 < 'vertex' 2
'vertex' 3 < 'edge' 1 2
'vertex' 1 < 'edge' 1 1
'edge' 1 1 < 'edge' 1 2
'edge' 1 2 < 'edge' 1 1 + 'edge' 2 2
'edge' 1 2 < 'edge' 1 3@
Note that the resulting order refines the
'isSubgraphOf' relation and is compatible
with 'overlay' and
'connect' operations:
@'isSubgraphOf' x y ==> x <= y@
@x <= x + y
x + y <= x * y@
-}
newtype AdjacencyMap a = NAM { am :: AM.AdjacencyMap a }
deriving (Eq, Generic, IsString, NFData, Ord)
-- | __Note:__ this does not satisfy the usual ring laws; see 'AdjacencyMap' for
-- more details.
instance (Ord a, Num a) => Num (AdjacencyMap a) where
fromInteger = vertex . fromInteger
(+) = overlay
(*) = connect
signum = error "NonEmpty.AdjacencyMap.signum cannot be implemented."
abs = id
negate = id
instance (Ord a, Show a) => Show (AdjacencyMap a) where
showsPrec p nam
| null vs = error "NonEmpty.AdjacencyMap.Show: Graph is empty"
| null es = showParen (p > 10) $ vshow vs
| vs == used = showParen (p > 10) $ eshow es
| otherwise = showParen (p > 10) $
showString "overlay (" . vshow (vs \\ used) .
showString ") (" . eshow es . showString ")"
where
vs = toList (vertexList1 nam)
es = edgeList nam
vshow [x] = showString "vertex " . showsPrec 11 x
vshow xs = showString "vertices1 " . showsPrec 11 xs
eshow [(x, y)] = showString "edge " . showsPrec 11 x .
showString " " . showsPrec 11 y
eshow xs = showString "edges1 " . showsPrec 11 xs
used = Set.toAscList $ Set.fromList $ uncurry (++) $ unzip es
-- | Defined via 'overlay'.
instance Ord a => Semigroup (AdjacencyMap a) where
(<>) = overlay
-- Unsafe creation of a NonEmpty list.
unsafeNonEmpty :: [a] -> NonEmpty a
unsafeNonEmpty = fromMaybe (error msg) . nonEmpty
where
msg = "Algebra.Graph.AdjacencyMap.unsafeNonEmpty: Graph is empty"
-- | Convert a possibly empty 'AM.AdjacencyMap' into NonEmpty.'AdjacencyMap'.
-- Returns 'Nothing' if the argument is 'AM.empty'.
-- Complexity: /O(1)/ time, memory and size.
--
-- @
-- toNonEmpty 'AM.empty' == 'Nothing'
-- toNonEmpty . 'fromNonEmpty' == 'Just'
-- @
toNonEmpty :: AM.AdjacencyMap a -> Maybe (AdjacencyMap a)
toNonEmpty x | AM.isEmpty x = Nothing
| otherwise = Just (NAM x)
-- | Convert a NonEmpty.'AdjacencyMap' into an 'AM.AdjacencyMap'. The resulting
-- graph is guaranteed to be non-empty.
-- Complexity: /O(1)/ time, memory and size.
--
-- @
-- 'isEmpty' . fromNonEmpty == 'const' 'False'
-- 'toNonEmpty' . fromNonEmpty == 'Just'
-- @
fromNonEmpty :: AdjacencyMap a -> AM.AdjacencyMap a
fromNonEmpty = am
-- | Construct the graph comprising /a single isolated vertex/.
--
-- @
-- 'hasVertex' x (vertex y) == (x == y)
-- 'vertexCount' (vertex x) == 1
-- 'edgeCount' (vertex x) == 0
-- @
vertex :: a -> AdjacencyMap a
vertex = coerce AM.vertex
{-# NOINLINE [1] vertex #-}
-- | Construct the graph comprising /a single edge/.
--
-- @
-- edge x y == 'connect' ('vertex' x) ('vertex' y)
-- 'hasEdge' x y (edge x y) == True
-- 'edgeCount' (edge x y) == 1
-- 'vertexCount' (edge 1 1) == 1
-- 'vertexCount' (edge 1 2) == 2
-- @
edge :: Ord a => a -> a -> AdjacencyMap a
edge = coerce AM.edge
-- | /Overlay/ two graphs. This is a commutative, associative and idempotent
-- operation with the identity 'empty'.
-- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory.
--
-- @
-- 'hasVertex' z (overlay x y) == 'hasVertex' z x || 'hasVertex' z y
-- 'vertexCount' (overlay x y) >= 'vertexCount' x
-- 'vertexCount' (overlay x y) <= 'vertexCount' x + 'vertexCount' y
-- 'edgeCount' (overlay x y) >= 'edgeCount' x
-- 'edgeCount' (overlay x y) <= 'edgeCount' x + 'edgeCount' y
-- 'vertexCount' (overlay 1 2) == 2
-- 'edgeCount' (overlay 1 2) == 0
-- @
overlay :: Ord a => AdjacencyMap a -> AdjacencyMap a -> AdjacencyMap a
overlay = coerce AM.overlay
{-# NOINLINE [1] overlay #-}
-- | /Connect/ two graphs. This is an associative operation with the identity
-- 'empty', which distributes over 'overlay' and obeys the decomposition axiom.
-- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory. Note that the
-- number of edges in the resulting graph is quadratic with respect to the number
-- of vertices of the arguments: /m = O(m1 + m2 + n1 * n2)/.
--
-- @
-- 'hasVertex' z (connect x y) == 'hasVertex' z x || 'hasVertex' z y
-- 'vertexCount' (connect x y) >= 'vertexCount' x
-- 'vertexCount' (connect x y) <= 'vertexCount' x + 'vertexCount' y
-- 'edgeCount' (connect x y) >= 'edgeCount' x
-- 'edgeCount' (connect x y) >= 'edgeCount' y
-- 'edgeCount' (connect x y) >= 'vertexCount' x * 'vertexCount' y
-- 'edgeCount' (connect x y) <= 'vertexCount' x * 'vertexCount' y + 'edgeCount' x + 'edgeCount' y
-- 'vertexCount' (connect 1 2) == 2
-- 'edgeCount' (connect 1 2) == 1
-- @
connect :: Ord a => AdjacencyMap a -> AdjacencyMap a -> AdjacencyMap a
connect = coerce AM.connect
{-# NOINLINE [1] connect #-}
-- | Construct the graph comprising a given list of isolated vertices.
-- Complexity: /O(L * log(L))/ time and /O(L)/ memory, where /L/ is the length
-- of the given list.
--
-- @
-- vertices1 [x] == 'vertex' x
-- 'hasVertex' x . vertices1 == 'elem' x
-- 'vertexCount' . vertices1 == 'length' . 'Data.List.NonEmpty.nub'
-- 'vertexSet' . vertices1 == Set.'Set.fromList' . 'Data.List.NonEmpty.toList'
-- @
vertices1 :: Ord a => NonEmpty a -> AdjacencyMap a
vertices1 = coerce AM.vertices . toList
{-# NOINLINE [1] vertices1 #-}
-- | Construct the graph from a list of edges.
-- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory.
--
-- @
-- edges1 [(x,y)] == 'edge' x y
-- edges1 == 'overlays1' . 'fmap' ('uncurry' 'edge')
-- 'edgeCount' . edges1 == 'Data.List.NonEmpty.length' . 'Data.List.NonEmpty.nub'
-- @
edges1 :: Ord a => NonEmpty (a, a) -> AdjacencyMap a
edges1 = coerce AM.edges . toList
-- | Overlay a given list of graphs.
-- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory.
--
-- @
-- overlays1 [x] == x
-- overlays1 [x,y] == 'overlay' x y
-- @
overlays1 :: Ord a => NonEmpty (AdjacencyMap a) -> AdjacencyMap a
overlays1 = coerce AM.overlays . toList
{-# NOINLINE overlays1 #-}
-- | Connect a given list of graphs.
-- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory.
--
-- @
-- connects1 [x] == x
-- connects1 [x,y] == 'connect' x y
-- @
connects1 :: Ord a => NonEmpty (AdjacencyMap a) -> AdjacencyMap a
connects1 = coerce AM.connects . toList
{-# NOINLINE connects1 #-}
-- | The 'isSubgraphOf' function takes two graphs and returns 'True' if the
-- first graph is a /subgraph/ of the second.
-- Complexity: /O((n + m) * log(n))/ time.
--
-- @
-- isSubgraphOf x ('overlay' x y) == True
-- isSubgraphOf ('overlay' x y) ('connect' x y) == True
-- isSubgraphOf ('path1' xs) ('circuit1' xs) == True
-- isSubgraphOf x y ==> x <= y
-- @
isSubgraphOf :: Ord a => AdjacencyMap a -> AdjacencyMap a -> Bool
isSubgraphOf = coerce AM.isSubgraphOf
-- | Check if a graph contains a given vertex.
-- Complexity: /O(log(n))/ time.
--
-- @
-- hasVertex x ('vertex' y) == (x == y)
-- @
hasVertex :: Ord a => a -> AdjacencyMap a -> Bool
hasVertex = coerce AM.hasVertex
-- | Check if a graph contains a given edge.
-- Complexity: /O(log(n))/ time.
--
-- @
-- hasEdge x y ('vertex' z) == False
-- hasEdge x y ('edge' x y) == True
-- hasEdge x y . 'removeEdge' x y == 'const' False
-- hasEdge x y == 'elem' (x,y) . 'edgeList'
-- @
hasEdge :: Ord a => a -> a -> AdjacencyMap a -> Bool
hasEdge = coerce AM.hasEdge
-- | The number of vertices in a graph.
-- Complexity: /O(1)/ time.
--
-- @
-- vertexCount ('vertex' x) == 1
-- vertexCount == 'length' . 'vertexList'
-- vertexCount x \< vertexCount y ==> x \< y
-- @
vertexCount :: AdjacencyMap a -> Int
vertexCount = coerce AM.vertexCount
-- | The number of edges in a graph.
-- Complexity: /O(n)/ time.
--
-- @
-- edgeCount ('vertex' x) == 0
-- edgeCount ('edge' x y) == 1
-- edgeCount == 'length' . 'edgeList'
-- @
edgeCount :: AdjacencyMap a -> Int
edgeCount = coerce AM.edgeCount
-- | The sorted list of vertices of a given graph.
-- Complexity: /O(n)/ time and memory.
--
-- @
-- vertexList1 ('vertex' x) == [x]
-- vertexList1 . 'vertices1' == 'Data.List.NonEmpty.nub' . 'Data.List.NonEmpty.sort'
-- @
vertexList1 :: AdjacencyMap a -> NonEmpty a
vertexList1 = unsafeNonEmpty . coerce AM.vertexList
-- | The sorted list of edges of a graph.
-- Complexity: /O(n + m)/ time and /O(m)/ memory.
--
-- @
-- edgeList ('vertex' x) == []
-- edgeList ('edge' x y) == [(x,y)]
-- edgeList ('star' 2 [3,1]) == [(2,1), (2,3)]
-- edgeList . 'edges' == 'Data.List.NonEmpty.nub' . 'Data.List.sort'
-- edgeList . 'transpose' == 'Data.List.sort' . 'map' 'Data.Tuple.swap' . edgeList
-- @
edgeList :: AdjacencyMap a -> [(a, a)]
edgeList = coerce AM.edgeList
-- | The set of vertices of a given graph.
-- Complexity: /O(n)/ time and memory.
--
-- @
-- vertexSet . 'vertex' == Set.'Set.singleton'
-- vertexSet . 'vertices1' == Set.'Set.fromList' . 'Data.List.NonEmpty.toList'
-- vertexSet . 'clique1' == Set.'Set.fromList' . 'Data.List.NonEmpty.toList'
-- @
vertexSet :: AdjacencyMap a -> Set a
vertexSet = coerce AM.vertexSet
-- | The set of edges of a given graph.
-- Complexity: /O((n + m) * log(m))/ time and /O(m)/ memory.
--
-- @
-- edgeSet ('vertex' x) == Set.'Set.empty'
-- edgeSet ('edge' x y) == Set.'Set.singleton' (x,y)
-- edgeSet . 'edges' == Set.'Set.fromList'
-- @
edgeSet :: Ord a => AdjacencyMap a -> Set (a, a)
edgeSet = coerce AM.edgeSet
-- | The /preset/ of an element @x@ is the set of its /direct predecessors/.
-- Complexity: /O(n * log(n))/ time and /O(n)/ memory.
--
-- @
-- preSet x ('vertex' x) == Set.'Set.empty'
-- preSet 1 ('edge' 1 2) == Set.'Set.empty'
-- preSet y ('edge' x y) == Set.'Set.fromList' [x]
-- @
preSet :: Ord a => a -> AdjacencyMap a -> Set.Set a
preSet = coerce AM.preSet
-- | The /postset/ of a vertex is the set of its /direct successors/.
-- Complexity: /O(log(n))/ time and /O(1)/ memory.
--
-- @
-- postSet x ('vertex' x) == Set.'Set.empty'
-- postSet x ('edge' x y) == Set.'Set.fromList' [y]
-- postSet 2 ('edge' 1 2) == Set.'Set.empty'
-- @
postSet :: Ord a => a -> AdjacencyMap a -> Set a
postSet = coerce AM.postSet
-- | The /path/ on a list of vertices.
-- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory.
--
-- @
-- path1 [x] == 'vertex' x
-- path1 [x,y] == 'edge' x y
-- path1 . 'Data.List.NonEmpty.reverse' == 'transpose' . path1
-- @
path1 :: Ord a => NonEmpty a -> AdjacencyMap a
path1 = coerce AM.path . toList
-- | The /circuit/ on a list of vertices.
-- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory.
--
-- @
-- circuit1 [x] == 'edge' x x
-- circuit1 [x,y] == 'edges1' [(x,y), (y,x)]
-- circuit1 . 'Data.List.NonEmpty.reverse' == 'transpose' . circuit1
-- @
circuit1 :: Ord a => NonEmpty a -> AdjacencyMap a
circuit1 = coerce AM.circuit . toList
-- | The /clique/ on a list of vertices.
-- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory.
--
-- @
-- clique1 [x] == 'vertex' x
-- clique1 [x,y] == 'edge' x y
-- clique1 [x,y,z] == 'edges1' [(x,y), (x,z), (y,z)]
-- clique1 (xs '<>' ys) == 'connect' (clique1 xs) (clique1 ys)
-- clique1 . 'Data.List.NonEmpty.reverse' == 'transpose' . clique1
-- @
clique1 :: Ord a => NonEmpty a -> AdjacencyMap a
clique1 = coerce AM.clique . toList
{-# NOINLINE [1] clique1 #-}
-- | The /biclique/ on two lists of vertices.
-- Complexity: /O(n * log(n) + m)/ time and /O(n + m)/ memory.
--
-- @
-- biclique1 [x1,x2] [y1,y2] == 'edges1' [(x1,y1), (x1,y2), (x2,y1), (x2,y2)]
-- biclique1 xs ys == 'connect' ('vertices1' xs) ('vertices1' ys)
-- @
biclique1 :: Ord a => NonEmpty a -> NonEmpty a -> AdjacencyMap a
biclique1 xs ys = coerce AM.biclique (toList xs) (toList ys)
-- TODO: Optimise.
-- | The /star/ formed by a centre vertex connected to a list of leaves.
-- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory.
--
-- @
-- star x [] == 'vertex' x
-- star x [y] == 'edge' x y
-- star x [y,z] == 'edges1' [(x,y), (x,z)]
-- @
star :: Ord a => a -> [a] -> AdjacencyMap a
star = coerce AM.star
{-# INLINE star #-}
-- | The /stars/ formed by overlaying a list of 'star's. An inverse of
-- 'adjacencyList'.
-- Complexity: /O(L * log(n))/ time, memory and size, where /L/ is the total
-- size of the input.
--
-- @
-- stars1 [(x, [] )] == 'vertex' x
-- stars1 [(x, [y])] == 'edge' x y
-- stars1 [(x, ys )] == 'star' x ys
-- stars1 == 'overlays1' . 'fmap' ('uncurry' 'star')
-- 'overlay' (stars1 xs) (stars1 ys) == stars1 (xs '<>' ys)
-- @
stars1 :: Ord a => NonEmpty (a, [a]) -> AdjacencyMap a
stars1 = coerce AM.stars . toList
-- | The /tree graph/ constructed from a given 'Tree' data structure.
-- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory.
--
-- @
-- tree (Node x []) == 'vertex' x
-- tree (Node x [Node y [Node z []]]) == 'path1' [x,y,z]
-- tree (Node x [Node y [], Node z []]) == 'star' x [y,z]
-- tree (Node 1 [Node 2 [], Node 3 [Node 4 [], Node 5 []]]) == 'edges1' [(1,2), (1,3), (3,4), (3,5)]
-- @
tree :: Ord a => Tree a -> AdjacencyMap a
tree = coerce AM.tree
-- | Remove a vertex from a given graph.
-- Complexity: /O(n*log(n))/ time.
--
-- @
-- removeVertex1 x ('vertex' x) == Nothing
-- removeVertex1 1 ('vertex' 2) == Just ('vertex' 2)
-- removeVertex1 x ('edge' x x) == Nothing
-- removeVertex1 1 ('edge' 1 2) == Just ('vertex' 2)
-- removeVertex1 x 'Control.Monad.>=>' removeVertex1 x == removeVertex1 x
-- @
removeVertex1 :: Ord a => a -> AdjacencyMap a -> Maybe (AdjacencyMap a)
removeVertex1 = fmap toNonEmpty . coerce AM.removeVertex
-- | Remove an edge from a given graph.
-- Complexity: /O(log(n))/ time.
--
-- @
-- removeEdge x y ('edge' x y) == 'vertices1' [x,y]
-- removeEdge x y . removeEdge x y == removeEdge x y
-- removeEdge 1 1 (1 * 1 * 2 * 2) == 1 * 2 * 2
-- removeEdge 1 2 (1 * 1 * 2 * 2) == 1 * 1 + 2 * 2
-- @
removeEdge :: Ord a => a -> a -> AdjacencyMap a -> AdjacencyMap a
removeEdge = coerce AM.removeEdge
-- | The function @'replaceVertex' x y@ replaces vertex @x@ with vertex @y@ in a
-- given 'AdjacencyMap'. If @y@ already exists, @x@ and @y@ will be merged.
-- Complexity: /O((n + m) * log(n))/ time.
--
-- @
-- replaceVertex x x == id
-- replaceVertex x y ('vertex' x) == 'vertex' y
-- replaceVertex x y == 'mergeVertices' (== x) y
-- @
replaceVertex :: Ord a => a -> a -> AdjacencyMap a -> AdjacencyMap a
replaceVertex = coerce AM.replaceVertex
-- | Merge vertices satisfying a given predicate into a given vertex.
-- Complexity: /O((n + m) * log(n))/ time, assuming that the predicate takes
-- constant time.
--
-- @
-- mergeVertices ('const' False) x == id
-- mergeVertices (== x) y == 'replaceVertex' x y
-- mergeVertices 'even' 1 (0 * 2) == 1 * 1
-- mergeVertices 'odd' 1 (3 + 4 * 5) == 4 * 1
-- @
mergeVertices :: Ord a => (a -> Bool) -> a -> AdjacencyMap a -> AdjacencyMap a
mergeVertices = coerce AM.mergeVertices
-- | Transpose a given graph.
-- Complexity: /O(m * log(n))/ time, /O(n + m)/ memory.
--
-- @
-- transpose ('vertex' x) == 'vertex' x
-- transpose ('edge' x y) == 'edge' y x
-- transpose . transpose == id
-- 'edgeList' . transpose == 'Data.List.sort' . 'map' 'Data.Tuple.swap' . 'edgeList'
-- @
transpose :: Ord a => AdjacencyMap a -> AdjacencyMap a
transpose = coerce AM.transpose
{-# NOINLINE [1] transpose #-}
{-# RULES
"transpose/vertex" forall x. transpose (vertex x) = vertex x
"transpose/overlay" forall g1 g2. transpose (overlay g1 g2) = overlay (transpose g1) (transpose g2)
"transpose/connect" forall g1 g2. transpose (connect g1 g2) = connect (transpose g2) (transpose g1)
"transpose/overlays1" forall xs. transpose (overlays1 xs) = overlays1 (fmap transpose xs)
"transpose/connects1" forall xs. transpose (connects1 xs) = connects1 (reverse (fmap transpose xs))
"transpose/vertices1" forall xs. transpose (vertices1 xs) = vertices1 xs
"transpose/clique1" forall xs. transpose (clique1 xs) = clique1 (reverse xs)
#-}
-- | Transform a graph by applying a function to each of its vertices. This is
-- similar to @Functor@'s 'fmap' but can be used with non-fully-parametric
-- 'AdjacencyMap'.
-- Complexity: /O((n + m) * log(n))/ time.
--
-- @
-- gmap f ('vertex' x) == 'vertex' (f x)
-- gmap f ('edge' x y) == 'edge' (f x) (f y)
-- gmap id == id
-- gmap f . gmap g == gmap (f . g)
-- @
gmap :: (Ord a, Ord b) => (a -> b) -> AdjacencyMap a -> AdjacencyMap b
gmap = coerce AM.gmap
-- | Construct the /induced subgraph/ of a given graph by removing the
-- vertices that do not satisfy a given predicate.
-- Complexity: /O(m)/ time, assuming that the predicate takes constant time.
--
-- @
-- induce1 ('const' True ) x == Just x
-- induce1 ('const' False) x == Nothing
-- induce1 (/= x) == 'removeVertex1' x
-- induce1 p 'Control.Monad.>=>' induce1 q == induce1 (\\x -> p x && q x)
-- @
induce1 :: (a -> Bool) -> AdjacencyMap a -> Maybe (AdjacencyMap a)
induce1 = fmap toNonEmpty . coerce AM.induce
-- | Construct the /induced subgraph/ of a given graph by removing the vertices
-- that are 'Nothing'. Returns 'Nothing' if the resulting graph is empty.
-- Complexity: /O(n + m)/ time.
--
-- @
-- induceJust1 ('vertex' 'Nothing') == 'Nothing'
-- induceJust1 ('edge' ('Just' x) 'Nothing') == 'Just' ('vertex' x)
-- induceJust1 . 'gmap' 'Just' == 'Just'
-- induceJust1 . 'gmap' (\\x -> if p x then 'Just' x else 'Nothing') == 'induce1' p
-- @
induceJust1 :: Ord a => AdjacencyMap (Maybe a) -> Maybe (AdjacencyMap a)
induceJust1 = toNonEmpty . AM.induceJust . coerce
-- | Compute the /reflexive and transitive closure/ of a graph.
-- Complexity: /O(n * m * log(n)^2)/ time.
--
-- @
-- closure ('vertex' x) == 'edge' x x
-- closure ('edge' x x) == 'edge' x x
-- closure ('edge' x y) == 'edges1' [(x,x), (x,y), (y,y)]
-- closure ('path1' $ 'Data.List.NonEmpty.nub' xs) == 'reflexiveClosure' ('clique1' $ 'Data.List.NonEmpty.nub' xs)
-- closure == 'reflexiveClosure' . 'transitiveClosure'
-- closure == 'transitiveClosure' . 'reflexiveClosure'
-- closure . closure == closure
-- 'postSet' x (closure y) == Set.'Set.fromList' ('Algebra.Graph.ToGraph.reachable' y x)
-- @
closure :: Ord a => AdjacencyMap a -> AdjacencyMap a
closure = coerce AM.closure
-- | Compute the /reflexive closure/ of a graph by adding a self-loop to every
-- vertex.
-- Complexity: /O(n * log(n))/ time.
--
-- @
-- reflexiveClosure ('vertex' x) == 'edge' x x
-- reflexiveClosure ('edge' x x) == 'edge' x x
-- reflexiveClosure ('edge' x y) == 'edges1' [(x,x), (x,y), (y,y)]
-- reflexiveClosure . reflexiveClosure == reflexiveClosure
-- @
reflexiveClosure :: Ord a => AdjacencyMap a -> AdjacencyMap a
reflexiveClosure = coerce AM.reflexiveClosure
-- | Compute the /symmetric closure/ of a graph by overlaying it with its own
-- transpose.
-- Complexity: /O((n + m) * log(n))/ time.
--
-- @
-- symmetricClosure ('vertex' x) == 'vertex' x
-- symmetricClosure ('edge' x y) == 'edges1' [(x,y), (y,x)]
-- symmetricClosure x == 'overlay' x ('transpose' x)
-- symmetricClosure . symmetricClosure == symmetricClosure
-- @
symmetricClosure :: Ord a => AdjacencyMap a -> AdjacencyMap a
symmetricClosure = coerce AM.symmetricClosure
-- | Compute the /transitive closure/ of a graph.
-- Complexity: /O(n * m * log(n)^2)/ time.
--
-- @
-- transitiveClosure ('vertex' x) == 'vertex' x
-- transitiveClosure ('edge' x y) == 'edge' x y
-- transitiveClosure ('path1' $ 'Data.List.NonEmpty.nub' xs) == 'clique1' ('Data.List.NonEmpty.nub' xs)
-- transitiveClosure . transitiveClosure == transitiveClosure
-- @
transitiveClosure :: Ord a => AdjacencyMap a -> AdjacencyMap a
transitiveClosure = coerce AM.transitiveClosure
-- TODO: Add tests.
-- | Check that the internal graph representation is consistent, i.e. that all
-- edges refer to existing vertices, and the graph is non-empty. It should be
-- impossible to create an inconsistent adjacency map, and we use this function
-- in testing.
--
-- @
-- consistent ('vertex' x) == True
-- consistent ('overlay' x y) == True
-- consistent ('connect' x y) == True
-- consistent ('edge' x y) == True
-- consistent ('edges' xs) == True
-- consistent ('stars' xs) == True
-- @
consistent :: Ord a => AdjacencyMap a -> Bool
consistent (NAM x) = AM.consistent x && not (AM.isEmpty x)