-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathmain.py
93 lines (83 loc) · 4.39 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
'''
Author: Sneha Singhania
This file contains the main program. The computation graph for ST-ResNet is built, launched in a session and trained here.
'''
from st_resnet import Graph
import tensorflow as tf
from params import Params as param
from tqdm import tqdm
from utils import batch_generator
import numpy as np
import h5py
if __name__ == '__main__':
# build the computation graph
g = Graph()
print ("Computation graph for ST-ResNet loaded\n")
# create summary writers for logging train and test statistics
train_writer = tf.summary.FileWriter('./logdir/train', g.loss.graph)
val_writer = tf.summary.FileWriter('./logdir/val', g.loss.graph)
# create dummy data with correct dimensions to check if data pipeline is working
# shape of a input map: (,ap_height, map_width, depth(num of history maps))
x_closeness = np.random.random(size=(1000, param.map_height, param.map_width, param.closeness_sequence_length * param.nb_flow))
x_period = np.random.random(size=(1000, param.map_height, param.map_width, param.period_sequence_length * param.nb_flow))
x_trend = np.random.random(size=(1000, param.map_height, param.map_width, param.trend_sequence_length * param.nb_flow))
y = np.random.random(size=(1000, param.map_height, param.map_width, 1))
X = []
for j in range(x_closeness.shape[0]):
X.append([x_closeness[j].tolist(), x_period[j].tolist(), x_trend[j].tolist()])
# create train-test split of data
train_index = int(round((0.8*len(X)),0))
xtrain = X[:train_index]
ytrain = y[:train_index]
xtest = X[train_index:]
ytest = y[train_index:]
xtrain = np.array(xtrain)
ytrain = np.array(ytrain)
xtest = np.array(xtest)
ytest = np.array(ytest)
# obtain an interator for the next batch
train_batch_generator = batch_generator(xtrain, ytrain, param.batch_size)
test_batch_generator = batch_generator(xtest, ytest, param.batch_size)
print("Start learning:")
with tf.Session(graph=g.graph) as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(param.num_epochs):
loss_train = 0
loss_val = 0
print("Epoch: {}\t".format(epoch), )
# training
num_batches = xtrain.shape[0] // param.batch_size
for b in tqdm(range(num_batches)):
x_batch, y_batch = next(train_batch_generator)
x_closeness = np.array(x_batch[:, 0].tolist())
x_period = np.array(x_batch[:, 1].tolist())
x_trend = np.array(x_batch[:, 2].tolist())
loss_tr, _, summary = sess.run([g.loss, g.optimizer, g.merged],
feed_dict={g.c_inp: x_closeness,
g.p_inp: x_period,
g.t_inp: x_trend,
g.output: y_batch})
loss_train = loss_tr * param.delta + loss_train * (1 - param.delta)
train_writer.add_summary(summary, b + num_batches * epoch)
# testing
num_batches = xtest.shape[0] // param.batch_size
for b in tqdm(range(num_batches)):
x_batch, y_batch = next(test_batch_generator)
x_closeness = np.array(x_batch[:, 0].tolist())
x_period = np.array(x_batch[:, 1].tolist())
x_trend = np.array(x_batch[:, 2].tolist())
loss_v, summary = sess.run([g.loss, g.merged],
feed_dict={g.c_inp: x_closeness,
g.p_inp: x_period,
g.t_inp: x_trend,
g.output: y_batch})
loss_val += loss_v
val_writer.add_summary(summary, b + num_batches * epoch)
if(num_batches != 0):
loss_val /= num_batches
print("loss: {:.3f}, val_loss: {:.3f}".format(loss_train, loss_val))
# save the model after every epoch
g.saver.save(sess, param.model_path+"/current")
train_writer.close()
val_writer.close()
print("Run 'tensorboard --logdir=./logdir' to checkout tensorboard logs.")