forked from rllab-snu/Deep-Elastic-Network
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils_widenet_ours.py
211 lines (155 loc) · 7.82 KB
/
utils_widenet_ours.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import tensorflow as tf
BN_EPSILON = 0.001
weight_decay = 0.0001
def create_variables(name, shape, initializer=tf.contrib.layers.xavier_initializer()):
regularizer = tf.contrib.layers.l2_regularizer(scale=weight_decay)
new_variables = tf.get_variable(name=name, shape=shape, initializer=initializer, regularizer=regularizer)
return new_variables
def output_layer(input_layer, num_labels):
input_dim = input_layer.get_shape().as_list()[-1]
fc_w = create_variables(name='fc_weights', shape=[input_dim, num_labels],
initializer=tf.uniform_unit_scaling_initializer(factor=1.0))
fc_b = create_variables(name='fc_bias', shape=[num_labels], initializer=tf.zeros_initializer())
fc_h = tf.matmul(input_layer, fc_w) + fc_b
return fc_h
def batch_normalization_layer(input_layer, dimension):
mean, variance = tf.nn.moments(input_layer, axes=[0, 1, 2])
beta = tf.get_variable('beta', dimension, tf.float32, initializer=tf.constant_initializer(0.0, tf.float32))
gamma = tf.get_variable('gamma', dimension, tf.float32, initializer=tf.constant_initializer(1.0, tf.float32))
bn_layer = tf.nn.batch_normalization(input_layer, mean, variance, beta, gamma, BN_EPSILON)
return bn_layer
def conv_bn_relu_layer(input_layer, filter_shape, stride):
out_channel = filter_shape[-1]
filter = create_variables(name='conv', shape=filter_shape)
conv_layer = tf.nn.conv2d(input_layer, filter, strides=[1, stride, stride, 1], padding='SAME')
bn_layer = batch_normalization_layer(conv_layer, out_channel)
output = tf.nn.relu(bn_layer)
return output
def bn_relu_conv_layer(input_layer, filter_shape, stride):
in_channel = input_layer.get_shape().as_list()[-1]
bn_layer = batch_normalization_layer(input_layer, in_channel)
relu_layer = tf.nn.relu(bn_layer)
filter = create_variables(name='conv', shape=filter_shape)
conv_layer = tf.nn.conv2d(relu_layer, filter, strides=[1, stride, stride, 1], padding='SAME')
return conv_layer
def residual_block(input_layer, output_channel, keep, lv=3, first_block=False):
input_channel = input_layer.get_shape().as_list()[-1]
output_channel = output_channel * 4
if first_block:
increase_dim = True
stride = 1
else:
if input_channel * 2 == output_channel:
increase_dim = True
stride = 2
elif input_channel == output_channel:
increase_dim = False
stride = 1
else:
raise ValueError('Residual Block Error')
with tf.variable_scope('conv1_in_block'):
if first_block:
conv_list = []
for i in range(lv):
if i is 0:
r = int(output_channel / pow(2, lv - i - 1))
else:
r = int(output_channel / pow(2, lv - i))
with tf.variable_scope('hidden_lv%d' % i):
filter = create_variables('conv', [3, 3, input_channel, r])
conv1 = tf.sign(tf.nn.relu(keep - i)) * tf.nn.conv2d(input_layer, filter=filter, strides=[1, 1, 1, 1], padding='SAME')
conv_list.append(conv1)
conv1 = tf.concat(conv_list, 3)
else:
conv_list = []
for i in range(lv):
if i is 0:
r = int(output_channel / pow(2, lv - i - 1))
else:
r = int(output_channel / pow(2, lv - i))
with tf.variable_scope('hidden_lv%d' % i):
conv1 = tf.sign(tf.nn.relu(keep - i)) * bn_relu_conv_layer(input_layer, [3, 3, input_channel, r], stride)
conv_list.append(conv1)
conv1 = tf.concat(conv_list, 3)
with tf.variable_scope('conv2_in_block'):
conv2 = bn_relu_conv_layer(conv1, [3, 3, output_channel, output_channel], 1)
if increase_dim is True:
if first_block:
padded_input = tf.pad(input_layer, [[0, 0], [0, 0], [0, 0], [24, 24]])
else:
pooled_input = tf.nn.avg_pool(input_layer, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
padded_input = tf.pad(pooled_input, [[0, 0], [0, 0], [0, 0], [input_channel // 2,
input_channel // 2]])
else:
padded_input = input_layer
output = conv2 + padded_input
return output
def inference(input_batch, nclasses, n, id, keeps, reuse, input_reuse):
j = 0
layers = []
with tf.variable_scope('widenet', reuse=input_reuse):
with tf.variable_scope('conv0_size%d' % id, reuse=input_reuse):
conv0 = conv_bn_relu_layer(input_batch, [7, 7, 3, 16], int(id/32))
layers.append(conv0)
with tf.variable_scope('widenet', reuse=reuse):
for i in range(n):
with tf.variable_scope('conv1_%d' % i, reuse=reuse):
if i == 0:
conv1 = residual_block(layers[-1], 16, keeps[:, j, :, :, :], first_block=True)
else:
conv1 = residual_block(layers[-1], 16, keeps[:, j, :, :, :])
j += 1
layers.append(conv1)
for i in range(n):
with tf.variable_scope('conv2_%d' % i, reuse=reuse):
conv2 = residual_block(layers[-1], 32, keeps[:, j, :, :, :])
j += 1
layers.append(conv2)
for i in range(n):
with tf.variable_scope('conv3_%d' % i, reuse=reuse):
conv3 = residual_block(layers[-1], 64, keeps[:, j, :, :, :])
j += 1
layers.append(conv3)
assert conv3.get_shape().as_list()[1:] == [8, 8, 256]
with tf.variable_scope('widenet', reuse=input_reuse):
with tf.variable_scope('fc_size%d' % id, reuse=input_reuse):
in_channel = layers[-1].get_shape().as_list()[-1]
bn_layer = batch_normalization_layer(layers[-1], in_channel)
relu_layer = tf.nn.relu(bn_layer)
global_pool = tf.reduce_mean(relu_layer, [1, 2])
assert global_pool.get_shape().as_list()[-1:] == [256]
output = output_layer(global_pool, nclasses)
layers.append(output)
return layers[-1]
def policy_inference(input_batch, n, id, reuse, input_reuse):
layers = []
with tf.variable_scope('policy', reuse=input_reuse):
with tf.variable_scope('conv0_size%d' % id, reuse=input_reuse):
conv0 = conv_bn_relu_layer(input_batch, [7, 7, 3, 16], int(id/32))
layers.append(conv0)
with tf.variable_scope('policy', reuse=reuse):
for i in range(1):
with tf.variable_scope('conv1_%d' % i, reuse=reuse):
if i == 0:
conv1 = residual_block(layers[-1], 16, tf.ones((1, 1, 1, 1)), first_block=True)
else:
conv1 = residual_block(layers[-1], 16, tf.ones((1, 1, 1, 1)))
layers.append(conv1)
for i in range(1):
with tf.variable_scope('conv2_%d' % i, reuse=reuse):
conv2 = residual_block(layers[-1], 32, tf.ones((1, 1, 1, 1)))
layers.append(conv2)
for i in range(1):
with tf.variable_scope('conv3_%d' % i, reuse=reuse):
conv3 = residual_block(layers[-1], 64, tf.ones((1, 1, 1, 1)))
layers.append(conv3)
assert conv3.get_shape().as_list()[1:] == [8, 8, 256]
with tf.variable_scope('fc', reuse=reuse):
in_channel = layers[-1].get_shape().as_list()[-1]
bn_layer = batch_normalization_layer(layers[-1], in_channel)
relu_layer = tf.nn.relu(bn_layer)
global_pool = tf.reduce_mean(relu_layer, [1, 2])
assert global_pool.get_shape().as_list()[-1:] == [256]
output = output_layer(global_pool, 12 * n)
layers.append(output)
return layers[-1]