-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGCPF-DAGMM.py
279 lines (231 loc) · 11.7 KB
/
GCPF-DAGMM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
# deep pretrained feature clustering for unsupervised anomaly detection
import os
import argparse
from loguru import logger
import numpy as np
from tqdm import tqdm
from collections import OrderedDict
import torch
import torch.nn.functional as F
from torchvision.models.resnet import wide_resnet50_2
from dataset.dagmm import DAGMDataset, DAGMM_CLASS
from torch.utils.data import DataLoader
import time
import pickle
from utils import calculate_distance_matrix, visualize
from sklearn.metrics import roc_auc_score
from sklearn.metrics import roc_curve
from sklearn.metrics import precision_recall_curve
from scipy.ndimage import gaussian_filter
import matplotlib.pyplot as plt
from sklearn.covariance import LedoitWolf
from scipy.spatial.distance import mahalanobis
from embedding import _kmeans_fun_gpu, _kgaussians_fun_gpu
def parse_args():
parser = argparse.ArgumentParser('DPFC-GMM')
parser.add_argument("--backbone", type=str, default='wide_resnet50_2')
parser.add_argument("--img_batch", type=int, default=32)
parser.add_argument("--time", type=int, default=4)
parser.add_argument("--data_root", type=str, default="D:/Dataset/DAGMM/")
parser.add_argument("--resize", type=int, default=224)
parser.add_argument("--crop_size", type=int, default=224)
parser.add_argument("--k", type=int, default=3)
parser.add_argument("--gpu_id", type=str, default="0")
parser.add_argument("--save_path", type=str, default='result_dagmm')
args = parser.parse_args()
return args
def main():
args = parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
train_feas_path = os.path.join(args.save_path, f'dpfc_kmeans_covariance-{args.crop_size}_{args.resize}', "temp")
os.makedirs(train_feas_path, exist_ok=True)
args.save_path = os.path.join(args.save_path, f'dpfc_kmeans_covariance-{args.crop_size}_{args.resize}', f"{args.backbone}", f"k_{args.k}")
os.makedirs(args.save_path, exist_ok=True)
temp_path = os.path.join(args.save_path, "temp")
os.makedirs(temp_path, exist_ok=True)
# logging
args.logger = args.save_path + f'/logger-{args.time}.txt'
logger.add(args.logger, rotation="200 MB", backtrace=True, diagnose=True)
logger.info(str(args))
# device = 'cpu'
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
output_feas = []
def _forward_hook(module, input, output):
output_feas.append(output)
# model = wide_resnet50_2(pretrained=True)
model = eval(args.backbone)(pretrained=True)
model.layer1[-1].register_forward_hook(_forward_hook)
model.layer2[-1].register_forward_hook(_forward_hook)
model.layer3[-1].register_forward_hook(_forward_hook)
model = model.to(device).eval()
total_pixel_level_ROCAUC = []
fig, ax = plt.subplots(1, 1, figsize=(10, 10))
center_nums = {'layer1': args.k, 'layer2': args.k, 'layer3': args.k}
for class_name in DAGMM_CLASS:
trainset = DAGMDataset(root_path=args.data_root, is_train=True, class_name=class_name, resize=args.resize,
cropsize=args.crop_size)
trainloader = DataLoader(trainset, batch_size=args.img_batch, shuffle=False, pin_memory=False)
testset = DAGMDataset(root_path=args.data_root, is_train=False, class_name=class_name, resize=args.resize,
cropsize=args.crop_size)
# testloader = DataLoader(testset, batch_size=args.img_batch, shuffle=False, pin_memory=False)
testloader = DataLoader(testset, batch_size=1, shuffle=False, pin_memory=False)
train_feas = OrderedDict([('layer1', []), ('layer2', []), ('layer3', []), ])
# 1. 提取训练集的特征
train_feas_pkl = os.path.join(train_feas_path, f"train_{args.backbone}_{class_name}.pkl")
# train_feas_pkl = os.path.join(temp_path, f"train_{args.backbone}_{class_name}.pkl")
if not os.path.exists(train_feas_pkl):
for x, _ in tqdm(trainloader, desc=f"[{class_name} train feature extract]"):
torch.cuda.empty_cache()
with torch.no_grad():
model(x.to(device))
for k, v in zip(train_feas, output_feas):
train_feas[k].append(v)
output_feas = []
for k, v in train_feas.items():
train_feas[k] = torch.cat(v, 0)
with open(train_feas_pkl, 'wb') as f:
pickle.dump(train_feas, f)
else:
logger.info(f"load {train_feas_pkl}")
with open(train_feas_pkl, 'rb') as f:
train_feas = pickle.load(f)
# testing
test_criterion_pkl = os.path.join(temp_path, f"test_{args.backbone}_{class_name}_criterion.pkl")
# if not os.path.exists(test_criterion_pkl):
if True:
torch.cuda.empty_cache()
# Kmeans 聚类
# center_nums = {'layer1': 3, 'layer2': 3, 'layer3': 3}
kmeans_pkl = os.path.join(temp_path, f"test_{args.backbone}_{class_name}_gmm.pkl")
# if not os.path.exists(kmeans_pkl):
if True:
kmeans_ = {}
for k, v in train_feas.items():
logger.info(f"Model GMM {class_name} feature {k}...")
v = v.transpose(1, 3).flatten(0, 2)
# cpu
_means_, _vars_ = _kgaussians_fun_gpu(v, K=center_nums[k])
kmeans_[k] = {'mean': _means_,
'var': _vars_}
with open(kmeans_pkl, 'wb') as f:
pickle.dump(kmeans_, f)
else:
with open(kmeans_pkl, 'rb') as f:
kmeans_ = pickle.load(f)
# Pixel Level Anomaly Segmentation
score_map_list = []
test_img_list = []
test_mask_list = []
# 2. 提取测试集的特征
for x, mask in tqdm(testloader, desc=f"[{class_name} test feature extract]"):
torch.cuda.empty_cache()
test_feas = OrderedDict([('layer1', []), ('layer2', []), ('layer3', []), ])
test_img_list.extend(x.detach().cpu().numpy())
test_mask_list.extend(mask.detach().cpu().numpy())
with torch.no_grad():
model(x.to(device))
for k, v in zip(test_feas, output_feas):
test_feas[k].append(v)
output_feas = []
for k, v in test_feas.items():
test_feas[k] = torch.cat(v, 0)
idx = 0
torch.cuda.empty_cache()
score_maps = []
for _layer in test_feas.keys():
torch.cuda.empty_cache()
test_feas_map = test_feas[_layer][idx]
_s = test_feas_map.size(1)
test_feas_map = test_feas_map.transpose(0, 2).flatten(0, 1)
_means_ = kmeans_[_layer]['mean']
_vars_ = kmeans_[_layer]['var']
ssst = time.time()
dist_matrix_k = torch.zeros([test_feas_map.size(0), center_nums[_layer]])
for k in range(center_nums[_layer]):
_m = torch.from_numpy(_means_[k].reshape(-1).astype(np.float32)).to(device)
_m = _m.unsqueeze(0)
_inv = torch.from_numpy(np.linalg.inv(_vars_[k]).astype(np.float32)).to(device)
# method 1
delta = test_feas_map - _m
temp = torch.mm(delta, _inv)
dist_matrix_k[:, k] = torch.sqrt_(torch.sum(torch.mul(delta, temp), dim=1))
eeet = time.time()
dist_matrix_k = torch.min(dist_matrix_k, dim=1)[0]
score_map = torch.reshape(dist_matrix_k, (_s, _s)).transpose(0, 1)
score_map = F.interpolate(score_map.unsqueeze(0).unsqueeze(0), size=args.crop_size,
mode='bilinear', align_corners=False)
score_maps.append(score_map)
# average distance between the features
score_map = torch.mean(torch.cat(score_maps, 0), dim=0)
# apply gaussian smoothing on the score map
score_map = gaussian_filter(score_map.squeeze().cpu().detach().numpy(), sigma=4)
score_map_list.append(np.expand_dims(score_map, axis=0))
flatten_mask_list = np.concatenate(test_mask_list).ravel()
flatten_score_map_list = np.concatenate(score_map_list).ravel()
torch.cuda.empty_cache()
# get optimal threshold
precision, recall, thresholds = precision_recall_curve(flatten_mask_list, flatten_score_map_list)
a = 2 * precision * recall
b = precision + recall
f1 = np.divide(a, b, out=np.zeros_like(a), where=b != 0)
threshold = thresholds[np.argmax(f1)]
# visualize localization result
# visualize(test_img_list, test_mask_list, score_map_list, threshold, class_name=class_name, save_path=args.save_path, num=1000)
# calculate per-pixel level ROCAUC
fpr, tpr, _ = roc_curve(flatten_mask_list, flatten_score_map_list)
pixel_level_ROCAUC = roc_auc_score(flatten_mask_list, flatten_score_map_list)
with open(test_criterion_pkl, 'wb') as f:
pickle.dump([fpr, tpr, pixel_level_ROCAUC], f)
else:
with open(test_criterion_pkl, 'rb') as f:
fpr, tpr, pixel_level_ROCAUC = pickle.load(f)
logger.info('%s pixel ROCAUC: %.5f' % (class_name, pixel_level_ROCAUC))
# logger.info(f"\n")
ax.plot(fpr, tpr, label='%s ROCAUC: %.5f' % (class_name, pixel_level_ROCAUC))
total_pixel_level_ROCAUC.append(pixel_level_ROCAUC)
avg_pixel_level_ROCAUC = np.mean(np.array(total_pixel_level_ROCAUC))
logger.info(f"Average pixel level ROCAUC: {avg_pixel_level_ROCAUC:.5f}")
ax.title.set_text('Average pixel ROCAUC: %.5f' % np.mean(avg_pixel_level_ROCAUC))
ax.legend(loc="lower right")
fig.tight_layout()
fig.savefig(os.path.join(args.save_path, f'roc_curve_{args.backbone}.png'), dpi=100)
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
from sklearn.cluster import KMeans
from sklearn.mixture import GaussianMixture
import matplotlib as mpl
def euclidean_metric_np(X, centroids):
n = X.shape[0]
k = centroids.shape[0]
X = np.expand_dims(X, 1)
# X = X.unsqueeze(1).expand(n, k, -1)
centroids = np.expand_dims(centroids, 0)
# centroids = centroids.unsqueeze(0).expand(n, k, -1)
dists = (X - centroids) ** 2
dists = np.sum(dists, axis=2)
return dists
def _kmeans_fun(X, K=10):
_X = X.detach().cpu().numpy()
D = _X.shape[1]
_kmeans = KMeans(n_clusters=K, max_iter=1000, verbose=0, tol=1e-40)
_kmeans.fit(_X)
# logger.info(_kmeans.cluster_centers_)
k_men = _kmeans.cluster_centers_
k_var = np.zeros([K, D, D])
_dist = euclidean_metric_np(_X, k_men)
_idx_min = np.argmin(_dist, axis=1)
for k in range(K):
samples = _X[k == _idx_min]
_m = np.mean(samples, axis=0)
k_var[k] = LedoitWolf().fit(samples).covariance_
return k_men, k_var
def euclidean_metric(a, b):
n = a.shape[0]
k = b.shape[0]
a = a.unsqueeze(1).expand(n, k, -1)
b = b.unsqueeze(0).expand(n, k, -1)
distance = ((a - b)**2).sum(dim=2)
return distance
if __name__ == "__main__":
main()
logger.info(f"\n\n\n")