-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain.py
196 lines (157 loc) · 7.69 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import argparse
import os
import torch
import torch.backends.cudnn as cudnn
from dataloader import ATLANTIS
from torch.utils.data import DataLoader
from models.pspnet import PSPNet
import joint_transforms as joint_transforms
class AdjustLearningRate:
num_of_iterations = 0
def __init__(self, optimizer, base_lr, max_iter, power):
self.optimizer = optimizer
self.base_lr = base_lr
self.max_iter = max_iter
self.power = power
def __call__(self, current_iter):
lr = self.base_lr * ((1 - float(current_iter) / self.max_iter) ** self.power)
self.optimizer.param_groups[0]['lr'] = lr
if len(self.optimizer.param_groups) > 1:
self.optimizer.param_groups[1]['lr'] = lr * 10
return lr
def train_loop(dataloader, model, loss_fn, optimizer, lr_estimator, interpolation):
# size = len(dataloader.dataset)
for batch, (images, masks, _, _, _) in enumerate(dataloader, 1):
# GPU deployment
images = images.cuda()
masks = masks.cuda()
# Compute prediction and loss
aux, pred = model(images)
aux = interpolation(aux)
pred = interpolation(pred)
loss = loss_fn(pred, masks) + 0.4 * loss_fn(aux, masks)
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
lr_estimator.num_of_iterations += len(images)
lr = lr_estimator(lr_estimator.num_of_iterations)
if batch % 100 == 0:
loss, current = loss.item(), lr_estimator.num_of_iterations
print(f"loss: {loss:.5f}, lr = {lr:.6f} [{current:6d}/{lr_estimator.max_iter:6d}]")
def val_loop(dataloader, model, loss_fn, interpolation):
size = len(dataloader.dataset)
num_batches = len(dataloader)
val_loss, correct = 0, 0
with torch.no_grad():
for images, masks, _, _, _ in dataloader:
# GPU deployment
images = images.cuda()
masks = masks.cuda()
# Compute prediction and loss
aux, pred = model(images)
aux = interpolation(aux)
pred = interpolation(pred)
val_loss += loss_fn(pred, masks) + 0.4 * loss_fn(aux, masks)
correct += (pred.argmax(1) == masks).type(torch.float).sum().item()
val_loss /= num_batches
correct /= (size * masks.size(1) * masks.size(2))
print(f"Test Error: \n Accuracy: {(100 * correct):>0.1f}%, Avg loss: {val_loss:>8f} \n")
def main(args):
cudnn.enabled = True
cudnn.benchmark = True
# Loading model
if args.model == "PSPNet":
model = PSPNet(img_channel=3, num_classes=args.num_classes)
try:
os.makedirs(args.snapshot_dir)
except FileExistsError:
pass
saved_state_dict = torch.load(args.restore_from)
new_params = model.state_dict().copy()
for key, value in saved_state_dict.items():
if key.split(".")[0] not in ["head", "dsn", "fc"]:
new_params[key] = value
model.load_state_dict(new_params, strict=False)
model = model.cuda()
model.train()
# Dataloader
train_joint_transform_list = [
joint_transforms.RandomSizeAndCrop(
args.input_size,
False,
pre_size=None,
scale_min=0.5,
scale_max=2.0,
ignore_index=0),
joint_transforms.Resize(args.input_size),
joint_transforms.RandomHorizontallyFlip()]
train_joint_transform = joint_transforms.Compose(train_joint_transform_list)
train_dataset = ATLANTIS(args.data_directory, split="train", joint_transform=train_joint_transform)
val_dataset = ATLANTIS(args.data_directory, split="val", joint_transform=train_joint_transform)
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.num_workers, pin_memory=True, drop_last=False)
val_dataloader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.num_workers, pin_memory=True, drop_last=False)
# Initializing the loss function and optimizer
loss_fn = torch.nn.CrossEntropyLoss(ignore_index=255)
optimizer = torch.optim.SGD(model.parameters(), lr=args.learning_rate,
momentum=args.momentum, weight_decay=args.weight_decay)
interpolation = torch.nn.Upsample(size=(args.input_size, args.input_size), mode="bilinear",
align_corners=True)
max_iter = args.num_epochs * len(train_dataloader.dataset)
lr_poly = AdjustLearningRate(optimizer, args.learning_rate, max_iter, args.power)
for epoch in range(args.num_epochs):
print(f"Epoch {epoch + 1}\n-------------------------------")
train_loop(train_dataloader, model, loss_fn, optimizer, lr_poly, interpolation)
val_loop(val_dataloader, model, loss_fn, interpolation)
torch.save(model.state_dict(),
os.path.join(args.snapshot_dir, "epoch" + str(epoch + 1) + ".pth"))
print("Done!")
def get_arguments(
MODEL="PSPNet",
NUM_CLASSES=56,
SNAPSHOT_DIR="snapshots/review_results/",
DATA_DIRECTORY="atlantis",
INPUT_SIZE=640,
BATCH_SIZE=2,
NUM_WORKERS=4,
LEARNING_RATE=2.5e-4,
MOMENTUM=0.9,
WEIGHT_DECAY=0.0001,
NUM_EPOCHS=30,
POWER=0.9,
RESTORE_FROM="snapshots/resnet101-imagenet.pth"
):
parser = argparse.ArgumentParser(description=f"Training {MODEL} on ATLANTIS.")
parser.add_argument("--model", type=str, default=MODEL,
help=f"Model Name: {MODEL}")
parser.add_argument("--num-classes", type=int, default=NUM_CLASSES,
help="Number of classes to predict, excluding background.")
parser.add_argument("--snapshot-dir", type=str, default=SNAPSHOT_DIR,
help="Where to save snapshots of the model.")
parser.add_argument("--restore-from", type=str, default=RESTORE_FROM,
help="Where to restore the model parameters.")
parser.add_argument("--input-size", type=int, default=INPUT_SIZE,
help="Comma-separated string with height and width of s")
parser.add_argument("--data-directory", type=str, default=DATA_DIRECTORY,
help="Path to the directory containing the source dataset.")
parser.add_argument("--batch-size", type=int, default=BATCH_SIZE,
help="Number of images sent to the network in one step.")
parser.add_argument("--num-workers", type=int, default=NUM_WORKERS,
help="Number of workers for multithreading dataloader.")
parser.add_argument("--learning-rate", type=float, default=LEARNING_RATE,
help="Base learning rate for training with polynomial decay.")
parser.add_argument("--momentum", type=float, default=MOMENTUM,
help="Momentum component of the optimizer.")
parser.add_argument("--weight-decay", type=float, default=WEIGHT_DECAY,
help="Regularisation parameter for L2-loss.")
parser.add_argument("--num-epochs", type=int, default=NUM_EPOCHS,
help="Number of epochs for training.")
parser.add_argument("--power", type=float, default=POWER,
help="Decay parameter to compute the learning rate.")
return parser.parse_args()
if __name__ == "__main__":
args = get_arguments()
print(f"{args.model} is deployed on {torch.cuda.get_device_name(0)}")
main(args)