forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpython_cpp_function.cpp
401 lines (354 loc) · 11.8 KB
/
python_cpp_function.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
#include <c10/util/irange.h>
#include <torch/csrc/autograd/python_cpp_function.h>
#include <torch/csrc/python_headers.h>
#include <cstdio>
#include <memory>
#include <typeindex>
#include <unordered_map>
#include <pybind11/pybind11.h>
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/autograd/python_anomaly_mode.h>
#include <torch/csrc/autograd/python_function.h>
#include <torch/csrc/autograd/python_hook.h>
#include <torch/csrc/autograd/python_variable.h>
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/utils/python_numbers.h>
#include <torch/csrc/utils/python_strings.h>
using namespace torch::autograd;
namespace torch::autograd {
namespace {
PyObject* THPCppFunction_call(
PyObject* self,
PyObject* args,
PyObject* kwargs) {
if (kwargs && PyDict_Size(kwargs) != 0) {
return PyErr_Format(PyExc_TypeError, "keyword arguments are not supported");
}
auto num_inputs = PyTuple_GET_SIZE(args);
auto num_inputs_required = ((THPCppFunction*)self)->cdata->num_inputs();
if (num_inputs != num_inputs_required) {
return PyErr_Format(
PyExc_TypeError,
"expected %d arguments, got %d instead",
num_inputs_required,
num_inputs);
}
variable_list vars(num_inputs);
for (int i = 0; i != num_inputs; ++i) {
PyObject* arg = PyTuple_GET_ITEM(args, i);
if (arg == Py_None) {
continue;
}
if (!THPVariable_Check(arg)) {
return PyErr_Format(PyExc_TypeError, "argument %d is not a Variable", i);
}
vars[i] = THPVariable_Unpack(arg);
}
variable_list output;
HANDLE_TH_ERRORS {
pybind11::gil_scoped_release nogil;
output = (*((THPCppFunction*)self)->cdata)(std::move(vars));
}
END_HANDLE_TH_ERRORS
auto num_outputs = output.size();
if (num_outputs == 1) {
// assume we want to unpack one element tuples for now
return THPVariable_Wrap(output[0]);
}
THPObjectPtr tuple(PyTuple_New(static_cast<Py_ssize_t>(num_outputs)));
for (size_t i = 0; i != num_outputs; ++i) {
PyTuple_SET_ITEM(tuple.get(), i, THPVariable_Wrap(output[i]));
}
return tuple.release();
}
int THPCppFunction_traverse(PyObject* self, visitproc visit, void* arg) {
if ((((THPCppFunction*)self)->cdata).use_count() == 1) {
// The fields traversed below are owned by the cpp grad_fn, which we own a
// reference to. We should only them traverse however if we are the only
// owner of the grad_fn, otherwise we risk prematurely gc'ing the grad_fn.
//
// See: https://github.com/pytorch/pytorch/issues/102174
auto& fn = *((THPCppFunction*)self)->cdata;
for (const auto& hook : fn.tensor_pre_hooks()) {
if (auto pyhook = dynamic_cast<PyFunctionTensorPreHook*>(hook.get())) {
Py_VISIT(pyhook->dict);
}
}
// NOTE [retains_grad_hook PyObject traversal]
// In theory this shouldn't be necessary, because retains_grad_hooks should
// not contain any PyFunctionTensorPreHooks. The alternative is to have a
// check that actually guarantees this.
for (const auto& pair : fn.retains_grad_hooks()) {
if (auto pyhook =
dynamic_cast<PyFunctionTensorPreHook*>(pair.second.get())) {
Py_VISIT(pyhook->dict);
}
}
for (const auto& hook : fn.pre_hooks()) {
if (auto pyhook = dynamic_cast<PyFunctionPreHook*>(hook.get())) {
Py_VISIT(pyhook->dict);
}
}
for (const auto& hook : fn.post_hooks()) {
if (auto pyhook = dynamic_cast<PyFunctionPostHook*>(hook.get())) {
Py_VISIT(pyhook->dict);
}
}
}
return 0;
}
int THPCppFunction_clear(PyObject* self) {
auto f = (THPCppFunction*)self;
// Remove the weak ref of the c++ object if it exist
if (f->cdata) {
f->cdata->set_pyobj(nullptr);
}
f->cdata.reset();
return 0;
}
void THPCppFunction_dealloc(PyObject* self) {
PyObject_GC_UnTrack(self);
THPCppFunction_clear(self);
((THPCppFunction*)self)->cdata.~shared_ptr();
Py_TYPE(self)->tp_free(self);
}
} // namespace
PyObject* THPCppFunction_next_functions(PyObject* self, void* _unused) {
auto cdata = reinterpret_cast<const THPCppFunction*>(self)->cdata;
const auto num_next = cdata->num_outputs();
THPObjectPtr py_functions(PyTuple_New(num_next));
if (!py_functions)
return nullptr;
for (const auto i : c10::irange(num_next)) {
auto& c_tuple = cdata->next_edge(i);
THPObjectPtr tuple(PyTuple_New(2));
if (!tuple)
return nullptr;
PyObject* py_fn = functionToPyObject(c_tuple.function);
if (!py_fn)
return nullptr;
PyTuple_SET_ITEM(tuple.get(), 0, py_fn);
PyObject* py_idx = THPUtils_packUInt32(c_tuple.input_nr);
if (!py_idx)
return nullptr;
PyTuple_SET_ITEM(tuple.get(), 1, py_idx);
PyTuple_SET_ITEM(py_functions.get(), i, tuple.release());
}
return py_functions.release();
}
PyObject* THPCppFunction_metadata(PyObject* self, void* _unused) {
auto* metadata =
static_cast<PyAnomalyMetadata*>(
reinterpret_cast<THPCppFunction*>(self)->cdata->metadata())
->dict();
Py_XINCREF(metadata);
return metadata;
}
PyObject* THPCppFunction_requires_grad(PyObject* self, void* unused) {
Py_RETURN_TRUE;
}
PyObject* THPCppFunction_register_hook_dict(PyObject* self, PyObject* _var) {
if (!THPVariable_Check(_var)) {
return PyErr_Format(
PyExc_TypeError, "_register_hook_dict expected a variable");
}
auto var = (THPVariable*)_var;
auto& fn = *((THPCppFunction*)self)->cdata;
fn.add_tensor_pre_hook(std::make_unique<PyFunctionTensorPreHook>(
var->backward_hooks, THPVariable_Unpack(var).output_nr()));
Py_RETURN_NONE;
}
PyObject* THPCppFunction_register_hook(PyObject* self, PyObject* hook) {
auto& fn = *((THPCppFunction*)self)->cdata;
return registerFunctionHook(fn, hook);
}
PyObject* THPCppFunction_register_prehook(PyObject* self, PyObject* hook) {
auto& fn = *((THPCppFunction*)self)->cdata;
return registerFunctionPreHook(fn, hook);
}
PyObject* THPCppFunction_name(PyObject* self, PyObject* noargs) {
auto& fn = *((THPCppFunction*)self)->cdata;
return THPUtils_packString(fn.name());
}
PyObject* THPCppFunction_sequence_nr(PyObject* self, PyObject* noargs) {
auto& fn = *((THPCppFunction*)self)->cdata;
return THPUtils_packUInt64(fn.sequence_nr());
}
PyObject* THPCppFunction_set_sequence_nr(
PyObject* self,
PyObject* sequence_nr) {
HANDLE_TH_ERRORS
auto& fn = *((THPCppFunction*)self)->cdata;
fn.set_sequence_nr(THPUtils_unpackUInt64(sequence_nr));
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPCppFunction_input_metadata(PyObject* self, void* closure) {
HANDLE_TH_ERRORS;
auto& fn = *((THPCppFunction*)self)->cdata;
const auto num_inputs =
fn.num_inputs(); // Assuming there's a method to get the number of inputs
THPObjectPtr list(PyTuple_New(num_inputs));
if (!list) {
return nullptr;
}
for (size_t i = 0; i < num_inputs; ++i) {
const auto& metadata = fn.input_metadata(i);
THPObjectPtr item(py::cast(metadata).release().ptr());
if (!item) {
return nullptr;
}
PyTuple_SET_ITEM(list.get(), i, item.release());
}
return list.release();
END_HANDLE_TH_ERRORS
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,cppcoreguidelines-avoid-non-const-global-variables,modernize-avoid-c-arrays)
static struct PyMethodDef default_methods[] = {
THP_FUNCTION_DEFAULT_METHODS,
{nullptr}};
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,cppcoreguidelines-avoid-non-const-global-variables,modernize-avoid-c-arrays)
static struct PyGetSetDef default_properties[] = {
THP_FUNCTION_DEFAULT_PROPERTIES,
{nullptr}};
PyTypeObject* _initFunctionPyTypeObject(
PyTypeObject& type,
const char* name,
PyGetSetDef* function_properties,
PyMethodDef* function_methods) {
type.ob_base = {
PyObject_HEAD_INIT(nullptr)
0};
// NOLINTNEXTLINE(misc-redundant-expression)
type.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC;
type.tp_name = name;
type.tp_basicsize = sizeof(THPCppFunction);
type.tp_call = THPCppFunction_call;
type.tp_methods = function_methods ? function_methods : default_methods;
type.tp_getset =
function_properties ? function_properties : default_properties;
type.tp_dealloc = THPCppFunction_dealloc;
type.tp_traverse = THPCppFunction_traverse;
type.tp_clear = THPCppFunction_clear;
if (PyType_Ready(&type) < 0) {
auto msg = std::string("Unable to instantiate PyTypeObject for ") + name;
throw std::runtime_error(msg);
}
return &type;
}
static std::unordered_map<std::type_index, THPObjectPtr> cpp_function_types_map;
static std::unordered_set<PyTypeObject*> cpp_function_types_set;
struct DefaultFunctionType {
DefaultFunctionType() : type() {
_initFunctionPyTypeObject(type, "CppFunction", nullptr, nullptr);
}
PyTypeObject type;
};
PyTypeObject* get_default_type() {
static DefaultFunctionType default_type;
return &(default_type.type);
}
PyObject* functionToPyObject(const std::shared_ptr<Node>& cdata) {
if (!cdata) {
Py_RETURN_NONE;
}
if (auto pfw = dynamic_cast<PyNode*>(cdata.get())) {
PyObject* obj = pfw->obj;
Py_INCREF(obj);
return obj;
}
if (cdata->pyobj()) {
Py_INCREF(cdata->pyobj());
} else {
auto& fn = *cdata;
auto it = cpp_function_types_map.find(std::type_index(typeid(fn)));
PyTypeObject* type = nullptr;
if (it == cpp_function_types_map.end()) {
type = get_default_type();
} else {
type = (PyTypeObject*)it->second.get();
}
THPObjectPtr obj(type->tp_alloc(type, 0));
if (!obj)
return nullptr;
THPCppFunction* f = (THPCppFunction*)obj.get();
new (&f->cdata) std::shared_ptr<Node>(cdata);
// No INCREF here as we only have a weak reference
cdata->set_pyobj(obj.release());
}
return cdata->pyobj();
}
void registerCppFunction(const std::type_info& type, PyTypeObject* pytype) {
Py_INCREF((PyObject*)pytype);
cpp_function_types_map[std::type_index(type)] =
THPObjectPtr((PyObject*)pytype);
cpp_function_types_set.insert(pytype);
}
bool THPCppFunction_Check(PyObject* obj) {
THPObjectPtr type = THPObjectPtr(PyObject_Type(obj));
if ((PyTypeObject*)type.get() == get_default_type()) {
return true;
}
if (cpp_function_types_set.find((PyTypeObject*)type.get()) ==
cpp_function_types_set.end()) {
return false;
} else {
return true;
}
}
PyObject* callRegisterFn(PyObject* dict, PyObject* hook) {
THPObjectPtr register_fn(
PyObject_GetAttrString(THPFunctionClass, "_register_hook"));
if (!register_fn) {
return nullptr;
}
THPObjectPtr res(
PyObject_CallFunctionObjArgs(register_fn.get(), dict, hook, nullptr));
if (!res) {
return nullptr;
}
return res.release();
}
PyObject* registerFunctionHook(Node& fn, PyObject* hook) {
PyObject* dict = Py_None;
for (const auto& hook : fn.post_hooks()) {
if (auto pyhook = dynamic_cast<PyFunctionPostHook*>(hook.get())) {
dict = pyhook->dict;
break;
}
}
THPObjectPtr res{callRegisterFn(dict, hook)};
if (!res) {
return nullptr;
}
if (dict == Py_None) {
dict = PyTuple_GET_ITEM(res.get(), 0);
fn.add_post_hook(std::make_unique<PyFunctionPostHook>(dict));
}
PyObject* handle = PyTuple_GET_ITEM(res.get(), 1);
Py_INCREF(handle);
return handle;
}
// This is almost a copy of the function above except post -> pre
PyObject* registerFunctionPreHook(Node& fn, PyObject* hook) {
PyObject* dict = Py_None;
for (const auto& hook : fn.pre_hooks()) {
if (auto pyhook = dynamic_cast<PyFunctionPreHook*>(hook.get())) {
dict = pyhook->dict;
break;
}
}
THPObjectPtr res{callRegisterFn(dict, hook)};
if (!res) {
return nullptr;
}
if (dict == Py_None) {
dict = PyTuple_GET_ITEM(res.get(), 0);
fn.add_pre_hook(std::make_unique<PyFunctionPreHook>(dict));
}
PyObject* handle = PyTuple_GET_ITEM(res.get(), 1);
Py_INCREF(handle);
return handle;
}
} // namespace torch::autograd