

(valid for a long
« Step2:. Get app certificate (sho
« Step3: TLS or DTLS handshake

« Step4: Start/Enable secure service

» Stepd: Start sending encrypted video / /

audio data

Module Cert
Preparation - Module Certicate

Policy Server Sl

=)
=

[]

start RPC service request (sec=false)

« Start conftrol service 0 is not
illustrated in the flow
« Start service request is on control
create PT Snapshot SerVi Ce
PolicyUpdate « RPCs are on RPC service

- Module cert valid for a long time
onsystemRequest | « PTU does not happen very time an
app regqisters

start RPC service ACK

RegisterApplnterface request

I

}

{

OnSystemRequest

HTTPS request

|
l HTTPS response |
|

SytemRequest

J

l SytemRequest |
|

decrypt PTU =

|
l OnReceivedPolicyUpdate |

module has app policy and a valid certificate

I

OnPermissionChange

|
|
|
|
l RegisterApplnterface response J :
|
|
|
|
|

App Cert

Preparation - App Certificate

et Sorver « App has the function call to proxy with
- secure flag turned on

| « Everything else is handled by security lib :

|
: download an app cert, TLS handshake,

| encryption and decryption
« App certis valid for a few days

I
I
| Request |
¢
I I

I

Response

>

app certificate N

Secure Service

Preparation - Secure Service

Mobile TLS handshake

key is ready for encryption/decryption

Start Video Service ACK (sec = true)

| : Il happens in the control
| Start Video Service (sec = true) >: | service
I | .
. . il SDL authenticates the
TLS handshake)) .
i : : app id
Iﬂ client hello (cryotographic information, cipher suite, client random) | |
| I
! server hello (cipherSuite, server certificate, server random and optional client cert request) NI :
I | |
:< Client certificate | |
| |
L ClientKeyExchange (secret preMasterKey encrypted using server's public key) : :
I | |
| ChangeCipherSpec & Finished | |
) 1 |
I I |
[ChangeCipherSpec & Finished >| |
I I |
| | |
I I |
> N |
I I |
I I |
1 | I
l I |
I I |

TLS handshake

Establish security capabilities,
including protocol version,
session 1D, cipher suite,
compression method, and
1nitial random numbers.

Server may send certificate,
key exchange, and request
certificate. Server signals end
of hello message phase.

Client sends certificate if
requested, Client sends key
exchange. Client may send
cerfificate verification.

Change cipher suite and finish
handshake protocol.

Note: Shaded transfers are
optional or situation-dependent
messages that are not always sent.

Figure 14.6 Handshake Protocol Action

Secure Video Service

Secure Video Service

|
| Start Video Service (sec = true) |

TLS handshake

|
| . key is ready for encryption/decryption

| I
| , Start Video Service ACK (sec =true) |
| I
I Start Stream(url, applD)

e E— |

|

|

| I

| | Start Stream success
|
|

1

| encrypted video data |

I
has video data =

| OnVideoStreaming(available:ture)

R
I

|
'
|
|
|

|
|
|
|
|
|
|
| | sending decrypted raw video data _ |
| I >
|
|
|
|
| | OnVideoStreaming(available false)
|
|

| Stop Video Service |
[I

| Stop Video Service ACK I

| Stop Stream |
I

|

|

| |
: I Stop Stream success

|

|

I —
I
I

Utilizes the same common security model as Audio and Video services (previou

Security model is already in production and utilized by existing navigation partners.
Current SDL security model requires some RPC's to be exchanged in unencrypted manner.
Secure RPC service can be opened after an unsecure RPC service is established.

Current model allows an app o
opened

SDL implementation does not provide capability to allow an OEM to require
RPC's.

OEM'’s need a way to notify apps that specific RPC's require encryption.
OEM'’s also need a way to enforce specific RPC’s to be sent and received with encryption on.
Recommended proposed solution is an incremental enhancement over the existing securitymogel.

- From an authentico
- Not modified

Messages that change vehicle High
state (Remote control)

Messages that fransmit read-only Medium
Personal Identifiable Information

Messages that fransmit read-only Medium
vehicle data

Other Messages Low

® @ L

encrypted for example. B
there are some interesting reading about B

« Even Transport level is secure, that's only fransport-to-SDL, still
need end(app)-to-end(SDL) encryption.

https://www.macrumors.com/2018/07/24/apple-fixed-bluetooth-security-vulnerability/
https://www.schneier.com/blog/archives/2017/09/bluetooth_vulne.html
https://armis.com/blueborne/

authenticated ag
authenticated app

- Module authentication
App only send information to an authenticated module

 TLS handshake does certificate verification to
check the identity of app and/or module

All traffic (except control messages)
can be encrypted

All RPC messages can be encrypted
from the beginning

Hard to design, prove and make
sure the new design is secure

Time consuming to design,
Implementation and verify

Lots of work

Not backward compatible with
existing mobile Navigation apps

Ground up redesign SDL security

Reuse secure video workflow

RegisterApplnterface,
OnSystemRequest, SystemRequest
cannot be encrypted from the
beginning, encryption enabled only
after certain point in the flow

Is in Production already
Small incremental change needed

Ready to start

Less work
backward compatible

This concept can be extended one step further to provide an O
which RPC’s require encryption via the SDL Core INI file.

This model is not as flexible as the policies recommendation, however it is a sufficient method

to ensure specific RPC's are encrypted and continues to follow the existing security model
implemented in SDL.

This model has the benefit of not requiring any policies side changes.

RPC message protection

Our design =

| start control service (sec=false) |

start control service ACK

|

|

|

|

|

| | |
| | start RPC service (sec=false) |
| e
|

|

|

|

|

l start RPC service ACK l

|
RegisterApplnterface request |

| RegisterApplnterface response |
| |

| OnPermissionChange |

optional: timing

OnHMIStatus

start RPC service ACK

encrypted RPCs

Stepl: Prepare module certificate same same
(secure by OEM encryption)

Step2: Get app certificate (secure same same

by OEM security lib)

Stepd: TLS or DTLS handshake same same implementation
(standard) (RPC need TLS)

Step4: Start/Enable secure service Service 11 Service 7

Stepb: Start sending encrypted Video data RPC data

video data

TLS handshake guarantees that the app is authenticated
Encryption add additional security — but may be optional if risk
accepted

The only difference that matters is the data to be
encrypted/decrypted
Policy update tells which RPCs for which app need protection

 All RPC’'s cannot k
Security Model (RAI, SystemRequest).
« Option 2: OEM selected RPCs of an app — our
approach recommended.
« OEM select RPC’s to encrypt based on policies or
INi config.
« Similar extensions to the policy
« Optionl: one Boolean flag per app
« Option2: one Boolean flag per RPC per app, thus

multiple flags per app

2

protectic
It gives OEM flexibility to se
their protected RPC list, OEM controls what and whe
It includes “ALL" capability, It allows OEM to transit to All approact OC

OEM is ready, OEM control the pace

It includes “Zero” capability, Compatible to existing system and apps, good for
OEMs that do not have security implemented

May Have the option to fall back to authentication only

Disadvantages

Proxy needs to maintain protected RPC list and check against the list, (proxy
already check mobile API versioning of each RPC?)

Complexity in policy server, however not required in INI approach

OEM disparity

Disadvantages

\/

multiple flags per app
It includes “Zero” capability, Compatible to €
that do not have security implemented

Many OEM’s may not be ready to encrypt ALL RPC's.
No flexibility to just protect what's needed by the OEM, force OEM to choose none or 4
Not possible to do authentication only

Is not more secure than our recommended approach (in terms of how to attack, ¢
security analysis)

OEM disparity still in in app level, not RPC level

« Ford may encrypt c
« notready yet, lessons learned from previou
- We turn off video packet encryption for iOS mobile-navigatic

applications due to the low performance of encryption (with app
authentication still on)

- Problems met when enable RPC encryption in the past?

- ltis not the performance to encrypt/decrypt, it is the overall impact to
the system

