
RPC MESSAGE PROTECTION
AND SECURE SERVICES IN SDL

Zhimin Yang

Currently – How secure video and audio services work

• Step1: Prepare module certificate
(valid for a long time)
• Step2: Get app certificate (short time)
• Step3: TLS or DTLS handshake
• Step4: Start/Enable secure service
• Step5: Start sending encrypted video /

audio data

Module Cert.

• Start control service 0 is not
illustrated in the flow

• Start service request is on control
service

• RPCs are on RPC service
• Module cert valid for a long time
• PTU does not happen very time an

app registers

App Cert.

• App has the function call to proxy with
secure flag turned on

• Everything else is handled by security lib :
download an app cert, TLS handshake,
encryption and decryption

• App cert is valid for a few days

Secure Service.

TLS handshake
happens in the control
service
SDL authenticates the
app id

TLS handshake.

Secure Video Service.

• Utilizes the same common security model as Audio and Video services (previously discussed)
• Security model is already in production and utilized by existing navigation partners.
• Current SDL security model requires some RPC’s to be exchanged in unencrypted manner.
• Secure RPC service can be opened after an unsecure RPC service is established.

Functionality already exists and is implemented in SDL Core

The Secure RPC Service in SDL

• Current model allows an app to freely send encrypted RPC’s after the secure RPC service has been
opened

• SDL implementation does not provide capability to allow an OEM to require encryption of specific
RPC’s.

• OEM’s need a way to notify apps that specific RPC’s require encryption.
• OEM’s also need a way to enforce specific RPC’s to be sent and received with encryption on.
• Recommended proposed solution is an incremental enhancement over the existing security model.

Proposed Enhancements to Secure RPC service handling

The Secure RPC Service in SDL Continued

Our goal or problem to solve

• Protect certain high risk RPC messages so that they
cannot be forged
- From an authenticated app
- Not modified

Messages Risk
Messages that change vehicle
state (Remote control)

High

Messages that transmit read-only
Personal Identifiable Information

Medium

Messages that transmit read-only
vehicle data

Medium

Other Messages Low

Security/Encryption – necessary or not

• Q: Some transports already provide encryption, for example
BT and MFi chip, does SDL still need encryption?

• Yes for security (boarder than just encryption)
• Transport security cannot be assumed. TCP is clearly not

encrypted for example. BT is not that secure as we thinks,
there are some interesting reading about BT security

- https://www.macrumors.com/2018/07/24/apple-fixed-bluetooth-
security-vulnerability/

- https://www.schneier.com/blog/archives/2017/09/bluetooth_vulne.
html

- https://armis.com/blueborne/
• Even Transport level is secure, that’s only transport-to-SDL, still

need end(app)-to-end(SDL) encryption.

https://www.macrumors.com/2018/07/24/apple-fixed-bluetooth-security-vulnerability/
https://www.schneier.com/blog/archives/2017/09/bluetooth_vulne.html
https://armis.com/blueborne/

It is not just encryption – It is also Authentication

• Mutual authentication
- App authentication

Modules only accept a request from a known and
authenticated app, and only send information to an
authenticated app

- Module authentication
App only send information to an authenticated module

• TLS handshake does certificate verification to
check the identity of app and/or module

Preferred approach : Re-use existing security workflow, extend
policies providing dynamic flexibility to OEM’s

• Policy update tells SDL which RPCs for which app need protection
• SDL forward the info to Apps (proxy) via OnPermissionChanged
• Proxy starts encryption

Ground up redesign SDL security Reuse secure video workflow

All traffic (except control messages)
can be encrypted
All RPC messages can be encrypted
from the beginning

RegisterAppInterface,
OnSystemRequest, SystemRequest
cannot be encrypted from the
beginning, encryption enabled only
after certain point in the flow

Hard to design, prove and make
sure the new design is secure

Is in Production already
Small incremental change needed

Time consuming to design,
implementation and verify

Ready to start

Lots of work Less work
Not backward compatible with
existing mobile Navigation apps

backward compatible

• This concept can be extended one step further to provide an OEM with the flexibility to choose
which RPC’s require encryption via the SDL Core INI file.

• This model is not as flexible as the policies recommendation, however it is a sufficient method
to ensure specific RPC’s are encrypted and continues to follow the existing security model
implemented in SDL.

• This model has the benefit of not requiring any policies side changes.

The current security model allows an OEM to specify which services (NAV,PCM) require protection,
allowing OEM’s to have flexibility to choose what services require encryption.

Another acceptable approach : Re-use existing security
workflow, utilize the SDL Core INI file

Our design.

Our design for RPC protection.
Secure video Secure RPC

Step1: Prepare module certificate
(secure by OEM encryption)

same same

Step2: Get app certificate (secure
by OEM security lib)

same same

Step3: TLS or DTLS handshake
(standard)

same same implementation
(RPC need TLS)

Step4: Start/Enable secure service Service 11 Service 7
Step5: Start sending encrypted
video data

Video data RPC data

• TLS handshake guarantees that the app is authenticated
• Encryption add additional security – but may be optional if risk

accepted
• The only difference that matters is the data to be

encrypted/decrypted
• Policy update tells which RPCs for which app need protection

What need to be protected/encrypted

• Option 1: Most RPCs (as some exceptions exist) of an
app – the so called ALL approach – in reality Most.
• All RPC’s cannot be encrypted with existing SDL

Security Model (RAI, SystemRequest).
• Option 2: OEM selected RPCs of an app – our

approach recommended.
• OEM select RPC’s to encrypt based on policies or

ini config.
• Similar extensions to the policy
• Option1: one Boolean flag per app
• Option2: one Boolean flag per RPC per app, thus

multiple flags per app

Our proposal: – OEM’ Decide what RPC’s to Encrypt

Advantages
• SDL core has logic to check each RPC message against HMI level, policy

allowance, mobile API version, etc. it is easy to add an additional check for RPC
protection

• It gives OEM flexibility to select messages to protect, OEM can gradually increase
their protected RPC list, OEM controls what and when

• It includes “ALL” capability, It allows OEM to transit to All approach smoothly, when
OEM is ready, OEM control the pace

• It includes “Zero” capability, Compatible to existing system and apps, good for
OEMs that do not have security implemented

• May Have the option to fall back to authentication only

Disadvantages
- Proxy needs to maintain protected RPC list and check against the list, (proxy

already check mobile API versioning of each RPC?)
- Complexity in policy server, however not required in INI approach
- OEM disparity

All Approach – Most RPC’s are encrypted, OEM’s lose flexibility
to choose

Advantages
• It is still a policy configuration extension per app as our approach
• Compared to dynamic policies approach, it is less complex: One flag per app vs

multiple flags per app
• It includes “Zero” capability, Compatible to existing system and apps, good for OEMs

that do not have security implemented

Disadvantages
• Many OEM’s may not be ready to encrypt ALL RPC’s.
• No flexibility to just protect what’s needed by the OEM, force OEM to choose none or all
• Not possible to do authentication only
• Is not more secure than our recommended approach (in terms of how to attack, or

security analysis)
• OEM disparity still in in app level, not RPC level

Production Requirements

• Some RPC messages have more risk than other RPCs.
• Ford has the emergent need to encrypt RC related RPC messages for the

production
• Ford may encrypt all RPC messages when it is ready
• not ready yet, lessons learned from previous SYNC3 experience

- We turn off video packet encryption for iOS mobile-navigation
applications due to the low performance of encryption (with app
authentication still on)

- Problems met when enable RPC encryption in the past?
- It is not the performance to encrypt/decrypt, it is the overall impact to

the system

Conclusion

• We support the flexibility (at the cost of complexity)

