-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathpkcs8.go
348 lines (310 loc) · 9.92 KB
/
pkcs8.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
package pemutil
import (
"crypto/aes"
"crypto/cipher"
"crypto/des"
"crypto/sha1"
"crypto/sha256"
"crypto/x509"
"crypto/x509/pkix"
"encoding/asn1"
"encoding/pem"
"hash"
"io"
"github.com/pkg/errors"
"golang.org/x/crypto/pbkdf2"
)
// PBKDF2SaltSize is the default size of the salt for PBKDF2, 128-bit salt.
const PBKDF2SaltSize = 16
// PBKDF2Iterations is the default number of iterations for PBKDF2, 100k
// iterations. Nist recommends at least 10k, 1Passsword uses 100k.
const PBKDF2Iterations = 100000
// pkcs8 reflects an ASN.1, PKCS#8 PrivateKey. See
// ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-8/pkcs-8v1_2.asn
// and RFC 5208.
type pkcs8 struct {
Version int
Algo pkix.AlgorithmIdentifier
PrivateKey []byte
// optional attributes omitted.
}
type publicKeyInfo struct {
Raw asn1.RawContent
Algo pkix.AlgorithmIdentifier
PublicKey asn1.BitString
}
// Encrypted pkcs8
// Based on https://github.com/youmark/pkcs8
// MIT license
type prfParam struct {
Algo asn1.ObjectIdentifier
NullParam asn1.RawValue
}
type pbkdf2Params struct {
Salt []byte
IterationCount int
PrfParam prfParam `asn1:"optional"`
}
type pbkdf2Algorithms struct {
Algo asn1.ObjectIdentifier
PBKDF2Params pbkdf2Params
}
type pbkdf2Encs struct {
EncryAlgo asn1.ObjectIdentifier
IV []byte
}
type pbes2Params struct {
KeyDerivationFunc pbkdf2Algorithms
EncryptionScheme pbkdf2Encs
}
type encryptedlAlgorithmIdentifier struct {
Algorithm asn1.ObjectIdentifier
Parameters pbes2Params
}
type encryptedPrivateKeyInfo struct {
Algo encryptedlAlgorithmIdentifier
PrivateKey []byte
}
var (
// key derivation functions
oidPKCS5PBKDF2 = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 5, 12}
oidPBES2 = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 5, 13}
oidHMACWithSHA256 = asn1.ObjectIdentifier{1, 2, 840, 113549, 2, 9}
// encryption
oidAES128CBC = asn1.ObjectIdentifier{2, 16, 840, 1, 101, 3, 4, 1, 2}
oidAES196CBC = asn1.ObjectIdentifier{2, 16, 840, 1, 101, 3, 4, 1, 22}
oidAES256CBC = asn1.ObjectIdentifier{2, 16, 840, 1, 101, 3, 4, 1, 42}
oidDESCBC = asn1.ObjectIdentifier{1, 3, 14, 3, 2, 7}
oidD3DESCBC = asn1.ObjectIdentifier{1, 2, 840, 113549, 3, 7}
)
// rfc1423Algo holds a method for enciphering a PEM block.
type rfc1423Algo struct {
cipher x509.PEMCipher
name string
cipherFunc func(key []byte) (cipher.Block, error)
keySize int
blockSize int
identifier asn1.ObjectIdentifier
}
// rfc1423Algos holds a slice of the possible ways to encrypt a PEM
// block. The ivSize numbers were taken from the OpenSSL source.
var rfc1423Algos = []rfc1423Algo{{
cipher: x509.PEMCipherDES,
name: "DES-CBC",
cipherFunc: des.NewCipher,
keySize: 8,
blockSize: des.BlockSize,
identifier: oidDESCBC,
}, {
cipher: x509.PEMCipher3DES,
name: "DES-EDE3-CBC",
cipherFunc: des.NewTripleDESCipher,
keySize: 24,
blockSize: des.BlockSize,
identifier: oidD3DESCBC,
}, {
cipher: x509.PEMCipherAES128,
name: "AES-128-CBC",
cipherFunc: aes.NewCipher,
keySize: 16,
blockSize: aes.BlockSize,
identifier: oidAES128CBC,
}, {
cipher: x509.PEMCipherAES192,
name: "AES-192-CBC",
cipherFunc: aes.NewCipher,
keySize: 24,
blockSize: aes.BlockSize,
identifier: oidAES196CBC,
}, {
cipher: x509.PEMCipherAES256,
name: "AES-256-CBC",
cipherFunc: aes.NewCipher,
keySize: 32,
blockSize: aes.BlockSize,
identifier: oidAES256CBC,
},
}
func cipherByKey(key x509.PEMCipher) *rfc1423Algo {
for i := range rfc1423Algos {
alg := &rfc1423Algos[i]
if alg.cipher == key {
return alg
}
}
return nil
}
// deriveKey uses a key derivation function to stretch the password into a key
// with the number of bits our cipher requires. This algorithm was derived from
// the OpenSSL source.
func (c rfc1423Algo) deriveKey(password, salt []byte, h func() hash.Hash) []byte {
return pbkdf2.Key(password, salt, PBKDF2Iterations, c.keySize, h)
}
// DecryptPEMBlock takes a password encrypted PEM block and the password used
// to encrypt it and returns a slice of decrypted DER encoded bytes.
//
// If the PEM blocks has the Proc-Type header set to "4,ENCRYPTED" it uses
// x509.DecryptPEMBlock to decrypt the block. If not it tries to decrypt the
// block using AES-128-CBC, AES-192-CBC, AES-256-CBC, DES, or 3DES using the
// key derived using PBKDF2 over the given password.
func DecryptPEMBlock(block *pem.Block, password []byte) ([]byte, error) {
if block.Headers["Proc-Type"] == "4,ENCRYPTED" {
// nolint:staticcheck
return x509.DecryptPEMBlock(block, password)
}
// PKCS#8 header defined in RFC7468 section 11
if block.Type == "ENCRYPTED PRIVATE KEY" {
return DecryptPKCS8PrivateKey(block.Bytes, password)
}
return nil, errors.New("unsupported encrypted PEM")
}
// DecryptPKCS8PrivateKey takes a password encrypted private key using the
// PKCS#8 encoding and returns the decrypted data in PKCS#8 form. If an
// incorrect password is detected an x509.IncorrectPasswordError is returned.
// Because of deficiencies in the format, it's not always possible to detect an
// incorrect password. In these cases no error will be returned but the
// decrypted DER bytes will be random noise.
//
// It supports AES-128-CBC, AES-192-CBC, AES-256-CBC, DES, or 3DES encrypted
// data using the key derived with PBKDF2 over the given password.
func DecryptPKCS8PrivateKey(data, password []byte) ([]byte, error) {
var pki encryptedPrivateKeyInfo
if _, err := asn1.Unmarshal(data, &pki); err != nil {
return nil, errors.Wrap(err, "failed to unmarshal private key")
}
if !pki.Algo.Algorithm.Equal(oidPBES2) {
return nil, errors.New("unsupported encrypted PEM: only PBES2 is supported")
}
if !pki.Algo.Parameters.KeyDerivationFunc.Algo.Equal(oidPKCS5PBKDF2) {
return nil, errors.New("unsupported encrypted PEM: only PBKDF2 is supported")
}
encParam := pki.Algo.Parameters.EncryptionScheme
kdfParam := pki.Algo.Parameters.KeyDerivationFunc.PBKDF2Params
iv := encParam.IV
salt := kdfParam.Salt
iter := kdfParam.IterationCount
// pbkdf2 hash function
keyHash := sha1.New
if kdfParam.PrfParam.Algo.Equal(oidHMACWithSHA256) {
keyHash = sha256.New
}
var symkey []byte
var block cipher.Block
var err error
switch {
// AES-128-CBC, AES-192-CBC, AES-256-CBC
case encParam.EncryAlgo.Equal(oidAES128CBC):
symkey = pbkdf2.Key(password, salt, iter, 16, keyHash)
block, err = aes.NewCipher(symkey)
case encParam.EncryAlgo.Equal(oidAES196CBC):
symkey = pbkdf2.Key(password, salt, iter, 24, keyHash)
block, err = aes.NewCipher(symkey)
case encParam.EncryAlgo.Equal(oidAES256CBC):
symkey = pbkdf2.Key(password, salt, iter, 32, keyHash)
block, err = aes.NewCipher(symkey)
// DES, TripleDES
case encParam.EncryAlgo.Equal(oidDESCBC):
symkey = pbkdf2.Key(password, salt, iter, 8, keyHash)
block, err = des.NewCipher(symkey)
case encParam.EncryAlgo.Equal(oidD3DESCBC):
symkey = pbkdf2.Key(password, salt, iter, 24, keyHash)
block, err = des.NewTripleDESCipher(symkey)
default:
return nil, errors.Errorf("unsupported encrypted PEM: unknown algorithm %v", encParam.EncryAlgo)
}
if err != nil {
return nil, err
}
data = pki.PrivateKey
mode := cipher.NewCBCDecrypter(block, iv)
mode.CryptBlocks(data, data)
// Blocks are padded using a scheme where the last n bytes of padding are all
// equal to n. It can pad from 1 to blocksize bytes inclusive. See RFC 1423.
// For example:
// [x y z 2 2]
// [x y 7 7 7 7 7 7 7]
// If we detect a bad padding, we assume it is an invalid password.
blockSize := block.BlockSize()
dlen := len(data)
if dlen == 0 || dlen%blockSize != 0 {
return nil, errors.New("error decrypting PEM: invalid padding")
}
last := int(data[dlen-1])
if dlen < last {
return nil, x509.IncorrectPasswordError
}
if last == 0 || last > blockSize {
return nil, x509.IncorrectPasswordError
}
for _, val := range data[dlen-last:] {
if int(val) != last {
return nil, x509.IncorrectPasswordError
}
}
return data[:dlen-last], nil
}
// EncryptPKCS8PrivateKey returns a PEM block holding the given PKCS#8 encroded
// private key, encrypted with the specified algorithm and a PBKDF2 derived key
// from the given password.
func EncryptPKCS8PrivateKey(rand io.Reader, data, password []byte, alg x509.PEMCipher) (*pem.Block, error) {
ciph := cipherByKey(alg)
if ciph == nil {
return nil, errors.Errorf("failed to encrypt PEM: unknown algorithm %v", alg)
}
salt := make([]byte, PBKDF2SaltSize)
if _, err := io.ReadFull(rand, salt); err != nil {
return nil, errors.Wrap(err, "failed to generate salt")
}
iv := make([]byte, ciph.blockSize)
if _, err := io.ReadFull(rand, iv); err != nil {
return nil, errors.Wrap(err, "failed to generate IV")
}
key := ciph.deriveKey(password, salt, sha256.New)
block, err := ciph.cipherFunc(key)
if err != nil {
return nil, errors.Wrap(err, "failed to create cipher")
}
enc := cipher.NewCBCEncrypter(block, iv)
pad := ciph.blockSize - len(data)%ciph.blockSize
encrypted := make([]byte, len(data), len(data)+pad)
// We could save this copy by encrypting all the whole blocks in
// the data separately, but it doesn't seem worth the additional
// code.
copy(encrypted, data)
// See RFC 1423, section 1.1
for i := 0; i < pad; i++ {
encrypted = append(encrypted, byte(pad))
}
enc.CryptBlocks(encrypted, encrypted)
// Build encrypted ans1 data
pki := encryptedPrivateKeyInfo{
Algo: encryptedlAlgorithmIdentifier{
Algorithm: oidPBES2,
Parameters: pbes2Params{
KeyDerivationFunc: pbkdf2Algorithms{
Algo: oidPKCS5PBKDF2,
PBKDF2Params: pbkdf2Params{
Salt: salt,
IterationCount: PBKDF2Iterations,
PrfParam: prfParam{
Algo: oidHMACWithSHA256,
},
},
},
EncryptionScheme: pbkdf2Encs{
EncryAlgo: ciph.identifier,
IV: iv,
},
},
},
PrivateKey: encrypted,
}
b, err := asn1.Marshal(pki)
if err != nil {
return nil, errors.Wrap(err, "error marshaling encrypted key")
}
return &pem.Block{
Type: "ENCRYPTED PRIVATE KEY",
Bytes: b,
}, nil
}