This repository has been archived by the owner on Dec 25, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathweek-07-equations.tex
94 lines (77 loc) · 3.31 KB
/
week-07-equations.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
\documentclass{tufte-handout}
\usepackage{xcolor}
\usepackage{graphicx}
% set hyperlink attributes
\hypersetup{colorlinks}
\usepackage{amsmath}
% set image attributes:
\usepackage{graphicx}
\graphicspath{ {images/} }
% create environment for bottom paragraph:
\newenvironment{bottompar}{\par\vspace*{\fill}}{\clearpage}
% ============================================================
% define the title
\title{SOC 4930/5050: Week 07 Equations Quick \\Reference}
\author{Christopher Prener, Ph.D.}
\date{October 9\textsuperscript{th}, 2017}
% ============================================================
\begin{document}
% ============================================================
\maketitle % generates the title
% ============================================================
\vspace{5mm}
\section{One-sample T-test}\marginnote{Degrees of freedom ($v$) is defined as $v=n-1$.}
\begin{equation}
\scalebox{2} {$ t=\frac { \bar { x } - \mu }{ \frac{s}{\sqrt{n}} } $}
\end{equation}
\vspace{5mm}
\section{Independent T-test, Homogeneous Variance}
\begin{subequations}
\paragraph{Independent T-test}\marginnote{Degrees of freedom ($v$) is defined as $v={n}_{a}+{n}_{b}-2$.}
\begin{equation}
\scalebox{2} {$ t=\frac { { \bar{X} }_{ a }-{ \bar{X} }_{ b } }{ \sqrt{\frac{{ s }_{ p }^{ 2 }}{{ n }_{ a }}+\frac{{ s }_{ p }^{ 2 }}{{ n }_{ b }}} } $}
\end{equation}
\vspace{3mm}
\paragraph{Pooled Variance}
\begin{equation}
\scalebox{2} {$ { s }_{ p }^{ 2 }=\frac{\left({n}_{a}-1\right){s}_{a}^{2}+\left({n}_{b}-1\right){s}_{b}^{2}}{{n}_{a}+{n}_{b}-2} $}
\end{equation}
\end{subequations}
\vspace{5mm}
\section{Independent T-test, Heterogeneous Variance}
\begin{subequations}
\paragraph{Independent T-test}
\begin{equation}
\scalebox{2} {$ t=\frac { { \bar{X} }_{ a }-{ \bar{X} }_{ b } }{ \sqrt{\frac{{ s }_{ a }^{ 2 }}{{ n }_{ a }}+\frac{{ s }_{ b }^{ 2 }}{{ n }_{ b }}} } $}
\end{equation}
\vspace{3mm}
\paragraph{Welch's Corrected Degrees of Freedom ($v$)}
\begin{equation}
\scalebox{2} {$ v\approx \frac { \left( \frac { { s }_{ a }^{ 2 } }{ { n }_{ a } } +\frac { { s }_{ b }^{ 2 } }{ { n }_{ b } } \right) ^{ 2 } }{ \frac { { s }_{ a }^{ 4 } }{ \left( { n }_{ a }^{2} \right)\left( { n }_{ a }-1 \right) } +\frac { { s }_{ b }^{ 4 } }{ \left( { n }_{ b }^{2} \right)\left( { n }_{ b }-1 \right) } } $}
\end{equation}
\end{subequations}
\vspace{5mm}
\section{Dependent T-test}
\begin{equation}
\scalebox{2} {$ t=\frac{\bar{d}}{\sqrt{\frac{{s}_{d}^{2}}{n}}} $}
\end{equation}
\vspace{5mm}
\section{Cohen's $D$}\marginnote{Note that groups $t$ and $c$ are defined for controlled experiments where $t=treatment$ and $c=control$. This can be applied to the above equations by defining $t=a$ and $c=b$.}
\begin{subequations}
\paragraph{General Equation}
\begin{equation}
\scalebox{2} {$ d=\frac{{M}_{t}-{M}_{c}}{\sqrt{\frac{\left({n}_{t}-1\right){s}_{t}^{2}+\left({n}_{c}-1\right){s}_{c}^{2}}{{n}_{t}+{n}_{c}-2}}} $}
\end{equation}
\vspace{3mm}
\paragraph{Cohen's $D$ after T-test, ${n}_{a}={n}_{b}$}
\begin{equation}
\scalebox{2} {$ d=\frac{2t}{\sqrt{v}} $}
\end{equation}
\vspace{3mm}
\paragraph{Cohen's $D$ after T-test, ${n}_{a}\neq{n}_{b}$}
\begin{equation}
\scalebox{2} {$ d=\frac{t\left({n}_{t}+{n}_{c}\right)}{\sqrt{v}\left(\sqrt{{n}_{t}+{n}_{c}} \right)} $}
\end{equation}
\end{subequations}
% ============================================================
\end{document}