

Spam Control on the Web

Paul M. Winkler
PyGotham II
June 2012

The Problem

● Comment / post spam evolves
● There will never be a silver bullet
● Old projects in maintenance mode get

increasingly hard to keep spam-free

"An Internet service cannot be considered
truly successful until it has attracted

spammers."

 - Rafe's law

http://rc3.org/2006/10/20/rafes-law/

The Story of Btwlzyq

Tracking a resourceful spammer on
http://communityalmanac.org.

Existing Solutions

A brief taxonomy / survey

See also appendix B - prior art.

Existing Solutions: Form Modifiers

● Captcha (obtrusive)

● Other problem solving (obtrusive)

● Honeypot Fields (unobtrusive)

By design, only useful against bots.

Content Filtering Services

Remote APIs:
● Bayesian filters
● IP blacklist

Good: Unobtrusive. Large training set.

Bad: Network overhead. Reliabilty.

Content filters: Local

● Bayesian filters and IP blacklists, but also:
● IP throttling
● Other metadata filtering: link counting, admin

users, …

Good: Unobtrusive. Low I/O overhead. Reliable.

Bad: Requires training.

Summary

● Lots of solutions
● None are sufficient alone
● Complement each other
● n solutions == n APIs
● n APIs integrate into m web apps == aaargh

Trac SpamFilter plugin - a flexible
approach

● "all of the above" approach
– 14 filters and 3 captchas

● extensible, easy to code new filters
● highly configurable

– select filters

– assign karma scores to filters (positive = good)

– set minimum karma needed for posting

Trac SpamFilter plugin (cont'd)

● Records possible spam in database for
moderation

● Moderation UI: rough but useful
● Moderation includes training
● Lots of tests

About the Trac plugin

http://www.cmlenz.net/archives/2006/11/managing-trac-spam

SpamAssassin has a similar multi-filter strategy, but is
designed for use with email, not web:

http://wiki.apache.org/spamassassin/BlogSpamAssassin

Filters - remote

stopforumspam.py

akismet.py

blogspam.py

defensio.py

extlinks.py

httpbl.py

ip_blacklist.py

linksleeve.py

typepad.py

Filters - local

regex.py

bayes.py

extlinks.py

ip_blacklist.py

ip_regex.py

ip_throttle.py

session.py

Captcha

recaptcha.py

image.py (uses PIL)

expression.py ("what is three plus twelve") … looks
unfinished

It only works with Trac.

Hamage Control!

● Goal: Decoupling SpamFilterPlugin from Trac
● Prototype
● http://github.com/slinkp/hamage

Hamage Control: modes of operation

● Python library API
● WSGI middleware
● Hybrid
● Native integration with every framework

– Nooo.

Python API: Filters

class MyFilter(object):

 def test(self, req, author, ip):

 "return (score, 'reason')"

Positive score = ham, negative =
spam.

 class MyFilterStrategy(object):

Python API: FilterSystem

>>> from hamage.filter import FilterSystem

>>> config = {

… 'options': {'min_karma': 1},

… 'filters': ['hamage_extlinks']}

>>> config['options']['backend_factory'] =
'django_orm'

>>> filtersys = FilterSystem(config)

Python API: FilterSystem

>>> filtersys.strategies

[<hamage.filters.extlinks.ExternalLi
nksFilterStrategy object at ...>]

>>> filtersys.backend_factory

<class'hamage.backends.django_hamage
.models.DjangoBackendFactory'>

Python API: FilterSystem

>>> from hamage.filter import Request

>>> req = Request.blank('/foo',
...remote_addr='10.20.30.40')

>>> filtersys.test(req, author='fred',

... changes=[('Old content', 'New content')])

Traceback (most recent call last):

...

hamage.filter.RejectContent: Submission rejected as
potential spam

Python API: FilterSystem

>>> filtersys.min_karma = 0

>>> filtersys.test(req,

... author='fred',

... changes=[('Old content', 'New
content')])

(0, [])

Python API: FilterSystem

>>> lotsa_links = 'http://somewhere.org ' * 100

>>> filtersys.test(req, author='fred',

... changes=[(None, lotsa_links)])

Traceback (most recent call last):

...

hamage.filter.RejectContent: Submission rejected as

potential spam (Maximum number of external links per
post exceeded)

Python API: Registering filters
Put entry points in your setup.py

setup(name='hamagecontrol',

 entry_points={

 'hamage_filters': [

 'hamage_extlinks =
hamage.filters.extlinks:ExternalLinksFilterStrategy',

],

 'hamage_backends': [

 'django_orm
=hamage.backends.django_hamage.models:DjangoBackendFactory',

],

...

WSGI Middleware

Request: Client POST → hamage (filtering) →
application

Response: application response→ hamage (form
field and error message injection) → client

Demo

● Django running via wsgiref server, behind WSGI
middleware

Wish List: RESTful web service?

● Use with any language
● Scale independently
● Would love to do this
● … later

Performance & Scaling

● Run cheapest filters first; allow them to short-
circuit.

● Parallelize slow filters (eg. network IO)
– How?

● Asynchronous operation

More about async

● Use case: speed
● Use case: moderation

– Integration just got tougher

– Feedback just got really hard
● Don't bother?

More on logging

● Remember Btwlzyq?
● Consistency matters

Parting shot

buy my cheap replica rolexes

No page rank for you buddy

Appendix A. Links

● Hamage Control:https://github.com/slinkp/hamage
● Django integration demo code:

https://github.com/slinkp/pygotham_hamage_demo
● These slides:

https://github.com/slinkp/pygotham_hamage_demo/blob/master/pygotham2
_hamage_slides.odp?raw=true

● Trac plugin: http://trac.edgewall.org/wiki/SpamFilter

Appendix B. Prior Art

Python packages related to spam. Too many for one slide, see
https://gist.github.com/2896944#file_prior_art.txt

