forked from SiobhanPowell/speech
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathspeech.py
775 lines (640 loc) · 35.9 KB
/
speech.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
"""
SPEECh: Scalable Probabilistic Estimates of EV Charging
Code first published in October 2021.
Developed by Siobhan Powell ([email protected]).
"""
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import pickle
import copy
import os
class DataSetConfigurations(object):
"""Store the information for each data set prepared.
Attributes:
ng: number of driver groups
data_set: name of data set used
folder: location of the data and model object files
cluster_reorder_actodend: mapping from cluster labels in agglomerative clustering (ac) to dendrogram (dend)
cluster_reorder_dendtoac: reverse mapping
categories: charging segments
labels: proper names for charging segments
colours: plotting colours for charging segments
num_categories: number of charging segments modeled
rates: charging rate for a session in each segment, in kW
gmm_names: part of file name for sessions model GMM object
start_time_scaler: adjustment to start time produced by GMM model
start_mod: limit when calculating modulo of generated start times
zkey_weekday, zkey_weekend: naming convention within pz
timers_dict: dictionary used to remove residential timers
Includes one entry for each driver group which needs to change.
For each driver group, a dictionary rebalancing weights among the sessions components.
timer_cat: which charging segment contains the timers
Methods:
original16(): sets up data properties for original data set with 16 clusters. When other datasets are added,
similar methods should be created for them.
set_up_dendrogram_cluster_mapping(): where the labels assigned in clustering are ordered differently than how
clusters are presented in the dendrogram, we reorder them so plotted orders match our expectation from the
dendrogram.
"""
def __init__(self, data_set, ng=None):
self.categories = []
self.labels = []
self.colours = {}
self.num_categories = 0
self.rates = []
self.zkey_weekday = ''
self.zkey_weekend = ''
self.cluster_reorder_dendtoac = {}
self.cluster_reorder_actodend = {}
self.gmm_names = {}
self.start_time_scaler = 1
self.start_mod = 1
self.timers_dict = {}
self.shift_timers_dict = {}
self.timer_cat = ''
if data_set == 'Original16':
self.data_set = 'Original16'
self.ng = 16
self.original16()
elif data_set == 'NewData':
self.data_set = 'NewData'
self.ng = ng
self.new_data()
else:
self.ng = ng
self.data_set = data_set
raise Exception('Select set-up method for new data set.')
self.set_up_dendrogram_cluster_mapping()
self.folder = 'Data/'+self.data_set+'/'
def original16(self):
"""Clustering used in first publication."""
self.categories = ['Home', 'MUD', 'Work', 'Other Slow', 'Other Fast']
self.labels = ['Residential L2', 'MUD L2', 'Workplace L2', 'Public L2', 'Public DCFC']
self.colours = {'Residential L2': '#dfc27d', 'MUD L2': '#f6e8c3', 'Workplace L2': '#80cdc1', 'Public L2': '#01665e', 'Public DCFC': '#003c30'}
self.num_categories = 5
self.rates = [6.6, 6.6, 6.6, 6.6, 150]
self.gmm_names = {'Home': 'home', 'Work': 'work', 'Other Slow': 'other_slow', 'MUD': 'mud', 'Other Fast': 'other_fast'}
self.start_time_scaler = 1/60
self.zkey_weekday = ' - Fraction of weekdays with session'
self.zkey_weekend = ' - Fraction of weekenddays with session'
self.start_mod = 24*3600
self.timers_dict = {1: {0: 0, 2: 0.40824126 + 0.27438057}, 13: {4: 0, 6: 0, 0: 0.13107678 + (0.13 / (0.13 + 0.25))*(0.03736147 + 0.22645425), 5: 0.25021152 + (0.25 / (0.13 + 0.25))*(0.03736147 + 0.22645425)},
3: {0: 0, 1: 0, 4: 0.20294322 + (0.20 / (0.14 + 0.20))*(0.25518963 + 0.03967571), 7: 0.1398116 + (0.14 / (0.14 + 0.20))*(0.25518963 + 0.03967571)}}
self.shift_timers_dict = {'Components': {1: [0], 13: [4, 6], 3: [0, 1]}, 'Targets': {'PGE': 23, 'SMUD': 0, 'SCE': 21, 'SDGE': 0}}
self.timer_cat = 'Home'
def new_data(self):
"""New Clustering. Also note new ng = 9 (replace with true value from implementation on new data."""
self.categories = ['Home', 'MUD', 'Work', 'Other Slow', 'Other Fast']
self.labels = ['Residential L2', 'MUD L2', 'Workplace L2', 'Public L2', 'Public DCFC']
self.colours = {'Residential L2': '#dfc27d', 'MUD L2': '#f6e8c3', 'Workplace L2': '#80cdc1', 'Public L2': '#01665e', 'Public DCFC': '#003c30'}
self.num_categories = 5
self.rates = [6.6, 6.6, 6.6, 6.6, 150]
self.gmm_names = {'Home': 'home', 'Work': 'work', 'Other Slow': 'other_slow', 'MUD': 'mud', 'Other Fast': 'other_fast'}
self.start_time_scaler = 1/60
self.zkey_weekday = ' - Fraction of weekdays with session'
self.zkey_weekend = ' - Fraction of weekenddays with session'
self.start_mod = 24*3600 # since start time is in seconds
self.timers_dict = {}
# Optional: record shifts for removing timers from fitted model
# self.timers_dict = {group number with timers in it:
# {gmm segment number with timers in it: 0,
# other gmm segment number to switch to: current weight + weight from timer segment}}
self.shift_timers_dict = {}
# Similarly: self.shift_timers_dict = {'Components': {group number with timers: [list of gmm segments with timers],
# another group number with timers: [list of gmm segments with timers],},
# 'Targets': {'PGE': 23, 'SMUD': 0, 'SCE': 21, 'SDGE': 0}}
self.timer_cat = 'Home'
def set_up_dendrogram_cluster_mapping(self):
if self.data_set == 'Original16':
self.cluster_reorder_actodend = {11: 0, 12: 1, 5: 2, 1: 3, 13: 4, 3: 5, 8: 6, 15: 7, 2: 8, 9: 9, 7: 10, 14: 11, 4: 12, 6: 13, 10: 14, 0: 15}
self.cluster_reorder_dendtoac = {0: 11, 1: 12, 2: 5, 3: 1, 4: 13, 5: 3, 6: 8, 7: 15, 8: 2, 9: 9, 10: 7, 11: 14, 12: 4, 13: 6, 14: 10, 15: 0}
else:
self.cluster_reorder_dendtoac = {i: i for i in range(self.ng)}
self.cluster_reorder_actodend = {i: i for i in range(self.ng)}
class SPEECh(object):
"""Top-level SPEECh class.
Attributes:
data: object from DataSetConfiguration class with set up of data set used.
pz: segment probabilities,
e.g. pz['weekday'][0]['Home'] gives the probability a driver in group 0 will charge at home on a weekday
pg: driver group probabilities
Methods:
pg_(): loads the base distribution for pg
pz_g(): loads the base values for pz
"""
def __init__(self, data):
self.data = data
self.pz = {'weekday': {}, 'weekend': {}}
self.pg_()
self.pz_g()
def pg_(self):
"""Loads the base distribution over driver groups."""
self.pg = pd.read_csv(self.data.folder+'pg.csv')
def pz_g(self):
"""Loads the segment probabilities."""
for i in range(self.data.ng):
self.pz['weekday'][i] = pd.read_csv(self.data.folder+'pz_weekday_g_'+str(i)+'.csv')
# if self.weekend_exists:
self.pz['weekend'][i] = pd.read_csv(self.data.folder+'pz_weekend_g_'+str(i)+'.csv')
class SPEEChGeneralConfiguration(object):
"""General configuration using the speech class to set up the driver groups and segments.
Attributes:
speech: object from the SPEECh class
num_total_drivers: number of drivers in the simulation
group_configs: sub-configuration for each driver group
num_drivers: number of drivers assigned to each driver group
time_step: time step for load profile simulated, in hours
num_time_steps: number of time steps in the profile
time_steps_per_hour: number of time steps per hour (inverse of time_step)
energy_clip: upper bound to energy values generated by GMM
total_load_dict: dictionary with the total load result
all_load_dicts: dictionary with the load results for each driver group
total_load_segments: array with the total load result
all_load_segments: dictionary of arrays with the load results for each driver group
remove_timers: option to remove timers from the segment specified in speech
Methods:
num_evs: number of electric vehicles (EVs) in simulation and driver groups.
groups: load configurations for each of the driver groups
change_ps_zg: can change the distribution over sessions model components, P(s|z, g)
change_pg: can change the distribution over driver groups, P(g)
run_all: calculates the load profiles
"""
def __init__(self, speech, remove_timers=False):
self.speech = speech
self.group_configs = {}
self.num_drivers = np.zeros((self.speech.data.ng, ))
self.time_step = (1/60)
self.num_time_steps = 1440
self.time_steps_per_hour = 60
self.energy_clip = 100
self.num_total_drivers = None
self.total_load_dict = {}
self.total_load_segments = np.zeros((self.num_time_steps, len(self.speech.data.labels)))
self.all_load_dicts = {}
self.all_load_segments = {}
self.remove_timers = remove_timers
# self.shift_timers = False
def num_evs(self, num_total_drivers, col='pg'):
"""Inputs the number of EVs in the simulation. Uses pg to calculate the number assigned to each driver group."""
self.num_total_drivers = num_total_drivers
for i in range(self.speech.data.ng):
self.num_drivers[i] = int(self.num_total_drivers * self.speech.pg.loc[i, col])
def groups(self):
"""For each driver group, create an object from the class SPEEChGroupConfiguration.
This method also implements the timer removal option by calling change_ps_zg().
"""
for i in range(self.speech.data.ng):
self.group_configs[i] = SPEEChGroupConfiguration(self, i)
if self.remove_timers:
if i in self.speech.data.timers_dict.keys():
self.change_ps_zg(i, self.speech.data.timer_cat, 'weekday', self.speech.data.timers_dict[i])
def change_ps_zg(self, g, cat, weekday, new_weights):
"""Change the distribution over sessions model components, P(s|z, g).
Parameters:
g: driver group
cat: charging segment (category)
weekday: weekday option
new_weights: dictionary giving new weights for segment cat in driver group g
The method alters the weights directly in the gmm without saving the original values.
The input need only specify new weights for a subset of the components;
the remaining weight will be distributed among the remaining components proportionately.
"""
if cat in self.group_configs[g].segment_gmms[weekday].keys():
gmm = self.group_configs[g].segment_gmms[weekday][cat]
all_inds = np.arange(0, np.shape(gmm.weights_)[0])
total_rem = 1
for key, val in new_weights.items():
gmm.weights_[key] = val
total_rem -= val
other_keys = np.delete(all_inds, list(new_weights.keys()))
gmm.weights_[other_keys] = gmm.weights_[other_keys] * total_rem / sum(gmm.weights_[other_keys])
self.group_configs[g].segment_gmms[weekday][cat] = gmm
def change_pg(self, new_weights, new_col='pg', dend=False):
"""Change the distribution over driver groups, P(g).
Parameters:
new_weights: dictionary giving the new weights for the driver groups
new_col: option to keep the original weights in column 'pg' and create a new column with the new weights
The input need only specify new weights for a subset of the components;
the remaining weight will be distributed among the remaining components proportionately.
"""
if dend: # If inputs are given using cluster numbers from the dendrogram
new_weights_old = copy.deepcopy(new_weights)
new_weights = {}
for key, val in new_weights_old.items():
new_weights[self.speech.data.cluster_reorder_dendtoac[key]] = val
self.speech.pg[new_col] = self.speech.pg['pg'].copy()
all_inds = np.arange(0, self.speech.data.ng)
total_rem = 1
for key, val in new_weights.items():
self.speech.pg.loc[key, new_col] = val
total_rem -= val
other_keys = np.delete(all_inds, list(new_weights.keys()))
self.speech.pg.loc[other_keys, new_col] = self.speech.pg.loc[other_keys, new_col] * total_rem / sum(self.speech.pg.loc[other_keys, new_col])
def run_all(self, verbose=False, weekday='weekday'):
"""Calculates the load profiles for each driver group using class LoadProfile.
Records the results for the separate groups and for the aggregate.
"""
self.total_load_dict = {x: np.zeros((self.num_time_steps,)) for x in self.speech.data.labels}
self.total_load_segments = np.zeros((self.num_time_steps, len(self.speech.data.labels)))
self.all_load_dicts = {}
self.all_load_segments = {}
for g in range(self.speech.data.ng):
if verbose:
print('Group '+str(g))
model = LoadProfile(self, self.group_configs[g], weekday=weekday)
model.calculate_load()
self.all_load_dicts[g] = model.load_segments_dict
self.all_load_segments[g] = model.load_segments_array
for key, val in model.load_segments_dict.items():
self.total_load_dict[key] += val
self.total_load_segments += model.load_segments_array
class SPEEChGroupConfiguration(object):
"""Configuration, sessions counts, and gmms for each individual driver group.
Attributes:
speech_config: object from class SPEEChGeneralConfiguration
g: driver group
total_drivers: number of drivers in the driver group
segment_session_numbers: dictionary of the number of sessions to generate from each charging segment
segment_gmms: the GMM objects needed to generate sessions
Methods:
numbers: calculate the values in segment_session_numbers
load_gmms: load the objects in segment_gmms
"""
def __init__(self, speech_config, g):
self.speech_config = speech_config
self.g = g
self.total_drivers = speech_config.num_drivers[g]
self.segment_session_numbers = {'weekday': {}, 'weekend': {}}
self.segment_gmms = {'weekday': {}, 'weekend': {}}
self.numbers()
self.load_gmms()
def numbers(self, total_drivers=None):
"""Calculates the number of sessions for this driver group in each of the charging segments.
Some driver groups have a very small number of charging sessions in a certain segment: too small for a sessions
model to have been trained on. In this method, if the number of sessions in the segment is fewer than 0.1% of
the number of drivers, we use that as a proxy to catch those cases where the model would throw an error.
Parameters:
total_drivers: gives the option to recalculate with a new value of total_drivers
"""
if total_drivers is not None:
self.total_drivers = total_drivers
inds = np.random.choice(range(len(self.speech_config.speech.pz['weekday'][self.g])), int(self.total_drivers), replace=True)
for cat in self.speech_config.speech.data.categories:
if os.path.isfile(self.speech_config.speech.data.folder+'GMMs/'+'weekday'+'_'+self.speech_config.speech.data.gmm_names[cat]+'_'+str(self.g)+'.p'):
self.segment_session_numbers['weekday'][cat] = int(sum(self.speech_config.speech.pz['weekday'][self.g].loc[inds, cat+self.speech_config.speech.data.zkey_weekday]))
else:
self.segment_session_numbers['weekday'][cat] = 0
if os.path.isfile(self.speech_config.speech.data.folder+'GMMs/'+'weekend'+'_'+self.speech_config.speech.data.gmm_names[cat]+'_'+str(self.g)+'.p'):
self.segment_session_numbers['weekend'][cat] = int(sum(self.speech_config.speech.pz['weekend'][self.g].loc[inds, cat+self.speech_config.speech.data.zkey_weekend]))
else:
self.segment_session_numbers['weekend'][cat] = 0
def load_gmms(self):
"""Loads the GMM model object for each of the segments."""
for cat in self.speech_config.speech.data.categories:
weekdaykeys = ['weekday', 'weekend']
for weekday in weekdaykeys:
if self.segment_session_numbers[weekday][cat] > 0:
key = self.speech_config.speech.data.folder+'GMMs/'+weekday+'_'+self.speech_config.speech.data.gmm_names[cat]+'_'+str(self.g)+'.p'
self.segment_gmms[weekday][cat] = pickle.load(open(key, "rb"))
class LoadProfile(object):
"""Calculating the load profile for a given configuration.
Attributes:
config: configuration, object from the class SPEEChGeneralConfiguration
group_config: group configuration, object from the class SPEEChGroupConfiguration
weekday: weekday option
load_segments_dict: results, dictionary of load segments
load_segments_array: results, array of load segments
Methods:
calculate_load: calculate the total load for each segment
end_times_and_load: calculate the uncontrolled load profiles for a set of sessions
"""
def __init__(self, config, group_config, weekday='weekday'):
"""Other option for weekday: 'weekend'."""
self.config = config # speech general configuration
self.group_config = group_config
self.weekday = weekday
self.load_segments_dict = {}
self.load_segments_array = np.zeros((self.config.num_time_steps, self.config.speech.data.num_categories))
def calculate_load(self, return_individual_session_parameters=False):
"""For each segment, calculate the total load profile.
For each segment, the process is as follows:
Step 1: generate sessions parameters using the segment GMM, stored in full_output
Step 2: post-process parameters
Step 3: calculate sessions load profiles, calling end_times_and_load
Step 4: store the result
"""
if return_individual_session_parameters:
individual_session_parameters = {}
for segment_number in range(self.config.speech.data.num_categories):
cat = self.config.speech.data.categories[segment_number]
num_vehicles = self.group_config.segment_session_numbers[self.weekday][cat]
if num_vehicles > 0:
gmm = self.group_config.segment_gmms[self.weekday][cat]
full_output = gmm.sample(num_vehicles)
output = full_output[0]
output = output[np.random.choice(np.shape(output)[0], np.shape(output)[0], replace=False), :]
if self.config.speech.data.start_mod == 1:
start_times = (self.config.speech.data.start_time_scaler * np.mod(24*3600*output[:, 0], 24*3600)).astype(int)
else:
start_times = (self.config.speech.data.start_time_scaler * np.mod(output[:, 0], 24*3600)).astype(int)
energies = np.clip(np.abs(output[:, 1]), 0, self.config.energy_clip)
end_times, load = self.end_times_and_load(start_times, energies, self.config.speech.data.rates[segment_number])
if return_individual_session_parameters:
individual_session_parameters[cat] = pd.DataFrame({'Start':start_times, 'Energy':np.round(energies,2), 'Duration': (self.config.speech.data.start_time_scaler * np.clip(np.abs(output[:, 2]), 0, 24*3600*7)).astype(int), 'Rate': self.config.speech.data.rates[segment_number] * np.ones(np.shape(start_times))})
else:
load = np.zeros((self.config.num_time_steps, ))
self.load_segments_dict[self.config.speech.data.labels[segment_number]] = load
self.load_segments_array[:, segment_number] = load
if return_individual_session_parameters:
return individual_session_parameters
def end_times_and_load(self, start_times, energies, rate):
"""Calculate the load profile given data on individual sessions.
Parameters:
start_times: set of start time indices
energies: energy delivered in each session, in kWh
rate: uncontrolled max charging rate of the session, in kW
Returns:
end_times: set of end time indices
load: total load from the set of sessions, a time series in kW
"""
time_steps_per_hour = self.config.time_steps_per_hour
num_time_steps = self.config.num_time_steps
load = np.zeros((num_time_steps,))
end_times = np.zeros(np.shape(start_times)).astype(int)
lengths = (time_steps_per_hour * energies / rate).astype(int)
extra_charges = energies - lengths * rate / time_steps_per_hour
inds1 = np.where((start_times + lengths) > num_time_steps)[0]
inds2 = np.delete(np.arange(0, np.shape(end_times)[0]), inds1)
end_times[inds1] = (np.minimum(start_times[inds1].astype(int)+lengths[inds1]-num_time_steps, num_time_steps)).astype(int)
end_times[inds2] = (start_times[inds2] + lengths[inds2]).astype(int)
inds3 = np.where(end_times >= num_time_steps)[0]
inds4 = np.delete(np.arange(0, np.shape(end_times)[0]), inds3)
for i in range(len(inds1)):
idx = int(inds1[i])
load[np.arange(int(start_times[idx]), num_time_steps)] += rate * np.ones((num_time_steps - int(start_times[idx]),))
load[np.arange(0, end_times[idx])] += rate * np.ones((end_times[idx],))
for i in range(len(inds2)):
idx = int(inds2[i])
load[np.arange(int(start_times[idx]), end_times[idx])] += rate * np.ones((lengths[idx],))
load[0] += np.sum(extra_charges[inds3] * time_steps_per_hour)
for i in range(len(inds4)):
load[end_times[int(inds4[i])]] += extra_charges[int(inds4[i])] * time_steps_per_hour
return end_times, load
class Plotting(object):
"""Plotting class - including final results of load profile, intermediate profiles, and distributions."""
def __init__(self, speech, config=None, n=5e6):
self.speech = speech
if config is None:
self.config = SPEEChGeneralConfiguration(speech)
self.config.num_evs(n)
self.config.groups()
else:
self.config = config
def pg(self, col='pg'):
vals = np.zeros((self.speech.data.ng, ))
for i in range(self.speech.data.ng):
j = self.speech.data.cluster_reorder_dendtoac[i]
vals[i] = self.speech.pg.loc[j, col]
plt.figure()
plt.bar(np.arange(1, self.speech.data.ng+1), vals)
plt.ylabel('P(G)')
plt.xlabel('G')
plt.show()
def total(self, verbose=False, weekday='weekday', save_str=None):
self.config.run_all(verbose=verbose, weekday=weekday)
self.plot_single(self.config.total_load_segments, self.config.total_load_dict, save_str=save_str)
def groups(self, n=1e5, weekday='weekday', save_string=None):
nrow = int(np.ceil(np.divide(self.speech.data.ng, 4)))
fig, axes = plt.subplots(nrow, 4, sharex=True, sharey=True, figsize=(12, int(nrow*3)))
config = copy.deepcopy(self.config)
ymax = 0
for i in range(self.speech.data.ng):
row = int(np.divide(i, 4))
col = np.mod(i, 4)
j = self.speech.data.cluster_reorder_dendtoac[i]
config.group_configs[j].numbers(total_drivers=n)
config.group_configs[j].load_gmms()
model = LoadProfile(config, config.group_configs[j], weekday=weekday)
model.calculate_load()
if np.max(np.sum(model.load_segments_array, axis=1)) > ymax:
ymax = np.max(np.sum(model.load_segments_array, axis=1))
ylab = False
if col == 0:
ylab = True
axes[row, col] = self.plot(axes[row, col], model.load_segments_array, model.load_segments_dict, title='Group '+str(i), ylab=ylab)
if (row == nrow) & (col < 3):
for col_left in np.arange(col, 4):
axes[row, col_left].set_axis_off()
for i in range(nrow):
for j in range(4):
axes[row, col].set_ylim([0, (1/1000)*ymax])
plt.tight_layout()
if save_string is not None:
plt.savefig(save_string, bbox_inches='tight')
plt.show()
def sessions_components(self, g, cat, weekday, n=1e5):
gmm = self.config.group_configs[g].segment_gmms[weekday][cat]
output = gmm.sample(n)
output_values = output[0]
output_labels = output[1]
fig, ax = plt.subplots(1,1,figsize=(8,5))
inds = np.arange(0, np.shape(output_values)[0])
if self.speech.data.start_mod == 1:
start_times = (self.speech.data.start_time_scaler * np.mod(24*3600*output_values[inds, 0], 24*3600)).astype(int)
else:
start_times = (self.speech.data.start_time_scaler * np.mod(output_values[inds, 0], 24*3600)).astype(int)
energies = np.clip(np.abs(output_values[inds, 1]), 0, self.config.energy_clip)
segment_number = np.where(np.array(self.speech.data.categories)==cat)[0][0]
end_times, load = self.end_times_and_load(start_times, energies, self.speech.data.rates[segment_number])
load_segments_array = np.zeros((self.config.num_time_steps, self.speech.data.num_categories))
load_segments_array[:, segment_number] = load
load_segments_dict = {self.speech.data.labels[segment_number]:load}
ax = self.plot(ax, load_segments_array, load_segments_dict, 'Total')
plt.tight_layout()
plt.show()
nc = gmm.n_components
fig, axes = plt.subplots(1, nc, sharex=True, sharey=True, figsize=(3*nc, 3))
ymax = 0
for i in range(nc):
inds = np.where(output_labels == i)[0]
if self.speech.data.start_mod == 1:
start_times = (self.speech.data.start_time_scaler * np.mod(24*3600*output_values[inds, 0], 24*3600)).astype(int)
else:
start_times = (self.speech.data.start_time_scaler * np.mod(output_values[inds, 0], 24*3600)).astype(int)
energies = np.clip(np.abs(output_values[inds, 1]), 0, self.config.energy_clip)
segment_number = np.where(np.array(self.speech.data.categories)==cat)[0][0]
end_times, load = self.end_times_and_load(start_times, energies, self.speech.data.rates[segment_number])
load_segments_array = np.zeros((self.config.num_time_steps, self.speech.data.num_categories))
load_segments_array[:, segment_number] = load
if np.max(load) > ymax:
ymax = np.max(load)
load_segments_dict = {self.speech.data.labels[segment_number]:load}
axes[i] = self.plot(axes[i], load_segments_array, load_segments_dict, 'Weight: '+str(np.round(gmm.weights_[i], 2)))
for i in range(nc):
axes[i].set_ylim([0, (1/1000)*ymax])
plt.tight_layout()
plt.show()
def plot(self, ax, load_segments_array, load_segments_dict, title, ylab=False):
x = (1/60)*np.arange(0, 1440)
mark = np.zeros(np.shape(x))
scaling = 1 / 1000
unit = 'MW'
if np.max(scaling * load_segments_array) > 1000:
scaling = (1 / 1000) * (1 / 1000)
unit = 'GW'
for key, val in load_segments_dict.items():
ax.plot(x, scaling * (mark + val), label=key, color=self.speech.data.colours[key])
ax.fill_between(x, scaling * mark, scaling * (mark + val), color=self.speech.data.colours[key])
mark += val
ax.plot(x, scaling * mark, 'k')
ax.set_xlim([0, np.max(x)])
if ylab:
ax.set_ylabel(unit, fontsize=14)
ax.set_xlabel('Hour', fontsize=14)
ax.set_title(title, fontsize=14)
ax.set_ylim(bottom=0)
return ax
def end_times_and_load(self, start_times, energies, rate):
time_steps_per_hour = self.config.time_steps_per_hour
num_time_steps = self.config.num_time_steps
load = np.zeros((num_time_steps,))
end_times = np.zeros(np.shape(start_times)).astype(int)
lengths = (time_steps_per_hour * energies / rate).astype(int)
extra_charges = energies - lengths * rate / time_steps_per_hour
inds1 = np.where((start_times + lengths) > num_time_steps)[0]
inds2 = np.delete(np.arange(0, np.shape(end_times)[0]), inds1)
end_times[inds1] = (np.minimum(start_times[inds1].astype(int)+lengths[inds1]-num_time_steps, num_time_steps)).astype(int)
end_times[inds2] = (start_times[inds2] + lengths[inds2]).astype(int)
inds3 = np.where(end_times >= num_time_steps)[0]
inds4 = np.delete(np.arange(0, np.shape(end_times)[0]), inds3)
for i in range(len(inds1)):
idx = int(inds1[i])
load[np.arange(int(start_times[idx]), num_time_steps)] += rate * np.ones((num_time_steps - int(start_times[idx]),))
load[np.arange(0, end_times[idx])] += rate * np.ones((end_times[idx],))
for i in range(len(inds2)):
idx = int(inds2[i])
load[np.arange(int(start_times[idx]), end_times[idx])] += rate * np.ones((lengths[idx],))
load[0] += np.sum(extra_charges[inds3] * time_steps_per_hour)
for i in range(len(inds4)):
load[end_times[int(inds4[i])]] += extra_charges[int(inds4[i])] * time_steps_per_hour
return end_times, load
def plot_single(self, load_segments_array, load_segments_dict, legend_subset=None, set_ylim=None, save_str=None, title=None):
x = (1/60)*np.arange(0, 1440)
mark = np.zeros(np.shape(x))
scaling = 1 / 1000
unit = 'MW'
if np.max(scaling * np.sum(load_segments_array, axis=1)) > 1000:
scaling = (1 / 1000) * (1 / 1000)
unit = 'GW'
plt.figure(figsize=(8, 5))
for key, val in load_segments_dict.items():
plt.plot(x, scaling * (mark + val), color=self.speech.data.colours[key])
if legend_subset is not None:
if key in legend_subset:
plt.fill_between(x, scaling * mark, scaling * (mark + val), label=key, color=self.speech.data.colours[key])
else:
plt.fill_between(x, scaling * mark, scaling * (mark + val), color=self.speech.data.colours[key])
else:
plt.fill_between(x, scaling * mark, scaling * (mark + val), label=key, color=self.speech.data.colours[key])
mark += val
plt.plot(x, scaling * mark, 'k')
plt.legend(fontsize=12, loc='upper left')
plt.xlim([0, np.max(x)])
if set_ylim is None:
plt.ylim([0, 1.1 * np.max(scaling * mark)])
else:
plt.ylim([0, set_ylim])
plt.ylabel(unit, fontsize=14)
plt.xlabel('Hour', fontsize=14)
plt.xticks(fontsize=14)
plt.yticks(fontsize=14)
if title is not None:
plt.set_title(title)
if save_str is not None:
plt.tight_layout()
plt.savefig(save_str, bbox_inches='tight')
plt.show()
def plot_single_above_base(self, load_segments_array, load_segments_dict, base_load, legend_subset=None, set_ylim=None, save_str=None, title=None):
x = (1/60)*np.arange(0, 1440)
if np.shape(base_load)[0] == 24:
xold = np.arange(0, 25)
yold = np.zeros((25,))
yold[np.arange(0, 24)] = np.copy(base_load)
yold[-1] = yold[0]
f2 = interp1d(xold, yold, kind='cubic')
base_load = f2(x)
elif np.shape(base_load)[0] == 288:
xold = (1/12)*np.arange(0, 289)
yold = np.zeros((289,))
yold[np.arange(0, 288)] = np.copy(base_load)
yold[-1] = yold[0]
f2 = interp1d(xold, yold, kind='cubic')
base_load = f2(x)
# mark = np.zeros(np.shape(x))
scaling = 1 / 1000
unit = 'MW'
if np.max(scaling * (base_load + np.sum(load_segments_array, axis=1))) > 1000:
scaling = (1 / 1000) * (1 / 1000)
unit = 'GW'
plt.figure(figsize=(8, 5))
plt.plot(x, scaling*base_load, color='k', alpha=0.8)
plt.fill_between(x, 0, scaling*base_load, color='k', alpha=0.4, label='Base Load')
mark = base_load
for key, val in load_segments_dict.items():
plt.plot(x, scaling * (mark + val), color=self.speech.data.colours[key])
if legend_subset is not None:
if key in legend_subset:
plt.fill_between(x, scaling * mark, scaling * (mark + val), label=key, color=self.speech.data.colours[key])
else:
plt.fill_between(x, scaling * mark, scaling * (mark + val), color=self.speech.data.colours[key])
else:
plt.fill_between(x, scaling * mark, scaling * (mark + val), label=key, color=self.speech.data.colours[key])
mark += val
plt.plot(x, scaling * mark, 'k')
plt.legend(fontsize=12, loc='lower left', ncol=2)
plt.xlim([0, np.max(x)])
if set_ylim is None:
plt.ylim([0, 1.1 * np.max(scaling * mark)])
else:
plt.ylim([0, set_ylim])
plt.ylabel(unit, fontsize=14)
plt.xlabel('Hour', fontsize=14)
plt.xticks(fontsize=14)
plt.yticks(fontsize=14)
if title is not None:
plt.set_title(title)
if save_str is not None:
plt.tight_layout()
plt.savefig(save_str, bbox_inches='tight')
plt.show()
class Scenarios(object):
"""The scenarios for P(G) based on those in the publication. For use by the user interface tool."""
def __init__(self, scenario_name):
self.scenario_name = scenario_name
self.new_weights = {}
if scenario_name == 'BaseCase':
self.base_case()
elif scenario_name == 'Workplace':
self.workplace()
elif scenario_name == 'WorkplaceLargeBattery':
self.workplace_large_batt()
elif scenario_name == 'HighMUD':
self.high_mud()
else:
self.original_data()
def base_case(self):
self.new_weights = {11: 0.05676, 12: 0.02521, 5: 0.04375, 1: 0.24707, 13: 0.14994, 3: 0.206, 8: 0.00727, 15: 0.0077,
2: 0.05344, 9: 0.067, 7: 0.01592, 14: 0.00891, 4: 0.0195, 6: 0.00762, 10: 0.0239, 0: 0.06004}
def workplace(self):
self.new_weights = {11: 0.086, 12: 0.03819, 5: 0.06628, 1: 0.18438, 13: 0.11189, 3: 0.15373, 8: 0.01102, 15: 0.01167,
2: 0.08096, 9: 0.05, 7: 0.02412, 14: 0.0135, 4: 0.02955, 6: 0.01154, 10: 0.03621, 0: 0.09096}
def workplace_large_batt(self):
self.new_weights = {11: 0.0, 12: 0.0, 5: 0.19047, 1: 0.18438, 13: 0.11189, 3: 0.15373, 8: 0.02891, 15: 0.03061,
2: 0.2124, 9: 0.05, 7: 0.02412, 14: 0.0135, 4: 0.0, 6: 0.0, 10: 0.0, 0: 0.0}
def high_mud(self):
self.new_weights = {11: 0.0172, 12: 0.00764, 5: 0.01326, 1: 0.24584, 13: 0.14919, 3: 0.20497, 8: 0.0022, 15: 0.00233,
2: 0.01619, 9: 0.3, 7: 0.00482, 14: 0.0027, 4: 0.00591, 6: 0.00231, 10: 0.00724, 0: 0.01819}
def original_data(self):
self.new_weights = {11: 0.16336, 12: 0.07255, 5: 0.12591, 1: 0.01981, 13: 0.01202, 3: 0.01652, 8: 0.02093, 15: 0.02216,
2: 0.1538, 9: 0.00186, 7: 0.04581, 14: 0.02564, 4: 0.05613, 6: 0.02193, 10: 0.06878, 0: 0.17279}