forked from SiobhanPowell/speech
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathRunPaperScenarios.py
327 lines (292 loc) · 15.7 KB
/
RunPaperScenarios.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
"""
SPEECh: Scalable Probabilistic Estimates of EV Charging
Code first published in October 2021.
Developed by Siobhan Powell ([email protected]).
This script runs the scenarios and generates the plots shown in the Results Section of the paper
`Scalable Probabilistic Estimates of Electric Vehicle Charging Given Observed Driver Behavior'.
"""
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import pickle
import time
from speech import DataSetConfigurations
from speech import SPEECh
from speech import SPEEChGeneralConfiguration
def plot_together(data, ax, set_ymax, yticks, fonts=14, yax=True, xax=True, legendloc='upper right', nolegend=False):
colours = ['#dfc27d', '#f6e8c3', '#80cdc1', '#01665e', '#003c30']
labels = ['Residential L2', 'Multi-Unit Dwelling L2', 'Workplace L2', 'Public L2', 'Public DCFC']
patterns = ['/', '///', '\\', 'x', '.', '*']
xplot = (1/60)*np.arange(0, 1440)
data = np.copy(data / (1000*1000)) # GW
base = np.zeros((1440, ))
for i in range(np.shape(data)[1]):
ax.plot(xplot, base+data[:, i], color=colours[i])
ax.fill_between(xplot, base, base+data[:, i], hatch=patterns[i], facecolor=colours[i], label=labels[i], edgecolor='grey')
base += data[:, i]
ax.plot(xplot, base, 'k')
ax.set_xlim([0, 24])
ax.set_ylim([0, set_ymax])
ax.set_xticks([0, 3, 6, 9, 12, 15, 18, 21])
if xax:
ax.set_xlabel('Time of day [h]', fontsize=fonts+2)
ax.set_xticklabels([0, 3, 6, 9, 12, 15, 18, 21], fontsize=fonts)
else:
ax.set_xticklabels([])
ax.set_yticks(yticks)
if yax:
ax.set_yticklabels(yticks.astype(int), fontsize=fonts)
ax.set_ylabel('Load [GW]', fontsize=fonts+2)
else:
ax.set_yticklabels([])
if not nolegend:
ax.legend(loc=legendloc, ncol=1, fontsize=fonts-2)
ax.set_axisbelow(True)
ax.grid(alpha=0.7)
return ax
total_evs = 8e6
weekday_option = 'weekday'
# Prepare weights for scenarios
data = DataSetConfigurations('Original16')
original_pg = pd.read_csv('Data/Original16/pg.csv')
counts_df = pd.DataFrame({'Original Weight': original_pg['pg'].values, 'AC Cluster Number': original_pg.index.values})
counts_df['Dend Cluster Number'] = 0
for i, j in data.cluster_reorder_dendtoac.items():
counts_df.loc[counts_df[counts_df['AC Cluster Number'] == j].index, 'Dend Cluster Number'] = i
counts_df = counts_df.sort_values(by='Dend Cluster Number').reset_index(drop=True)
## Scenario 123
### Gives 0.67*0.9 weight to the combined set [3, 4, 5], etc., as labeled in the Dend cluster number.
rescales = {(0.67*0.9): [3, 4, 5], (0.67*0.1): [9], 0.33: [0, 1, 2, 6, 7, 8, 10, 11, 12, 13, 14, 15]}
counts_df['Scen1'] = counts_df['Original Weight'].copy()
for key, val in rescales.items():
counts_df.loc[val, 'Scen1'] = counts_df.loc[val, 'Scen1'] * (key / sum(counts_df.loc[val, 'Scen1']))
## Scenario 4
rescales = {0.6: [3, 4, 5], 0.3: [9], 0.1: [0, 1, 2, 6, 7, 8, 10, 11, 12, 13, 14, 15]}
counts_df['Scen4'] = counts_df['Original Weight'].copy()
for key, val in rescales.items():
counts_df.loc[val, 'Scen4'] = counts_df.loc[val, 'Scen4'] * (key / sum(counts_df.loc[val, 'Scen4']) )
## Scenario 5
rescales = {(0.5*0.9): [3, 4, 5], (0.5*0.1): [9], 0.5: [0, 1, 2, 6, 7, 8, 10, 11, 12, 13, 14, 15]}
counts_df['Scen5'] = counts_df['Original Weight'].copy()
for key, val in rescales.items():
counts_df.loc[val, 'Scen5'] = counts_df.loc[val, 'Scen5'] * (key / sum(counts_df.loc[val, 'Scen5']))
## Scenario 6
counts_df['Scen6'] = counts_df['Scen5'].copy()
val = sum(counts_df.loc[counts_df[counts_df['Dend Cluster Number'].isin([6, 7, 8, 12, 13, 14, 15])].index, 'Scen6'])
counts_df.loc[counts_df[counts_df['Dend Cluster Number'].isin([12, 13, 14, 15])].index, 'Scen6'] = 0
counts_df.loc[counts_df[counts_df['Dend Cluster Number'].isin([6, 7, 8])].index, 'Scen6'] = (val / sum(counts_df.loc[counts_df[counts_df['Dend Cluster Number'].isin([6, 7, 8])].index, 'Scen6'])) * counts_df.loc[counts_df[counts_df['Dend Cluster Number'].isin([6, 7, 8])].index, 'Scen6']
val = sum(counts_df.loc[counts_df[counts_df['Dend Cluster Number'].isin([0, 1, 2])].index, 'Scen6'])
counts_df.loc[counts_df[counts_df['Dend Cluster Number'].isin([0, 1])].index, 'Scen6'] = 0
counts_df.loc[counts_df[counts_df['Dend Cluster Number'].isin([2])].index, 'Scen6'] = (val / sum(counts_df.loc[counts_df[counts_df['Dend Cluster Number'].isin([2])].index, 'Scen6'])) * counts_df.loc[counts_df[counts_df['Dend Cluster Number'].isin([2])].index, 'Scen6']
goal_weight = 0.67 # What to increase timers to
key = 'Data/Original16/GMMs/weekday_home_'+str(data.cluster_reorder_dendtoac[3])+'.p'
joint_gmm = pickle.load(open(key, "rb"))
# Augmenting timers for cluster 3:
base_weights3 = {}
base_weights3[0] = goal_weight
# Removing timers for cluster 3:
new_weights3 = {}
new_weights3[0] = 0
new_weights3[2] = joint_gmm.weights_[2] + joint_gmm.weights_[0]
# Work-from-home for cluster 3 - shift all to morning charging:
new_weights3_case4 = {}
new_weights3_case4[1] = joint_gmm.weights_[1]
for i in [0, 2, 3, 4]:
new_weights3_case4[i] = 0
new_weights3_case4[1] += joint_gmm.weights_[i]
key = 'Data/Original16/GMMs/weekday_home_'+str(data.cluster_reorder_dendtoac[4])+'.p'
joint_gmm = pickle.load(open(key, "rb"))
# Augmenting timers for cluster 4:
base_weights4 = {}
base_weights4[4] = goal_weight*(joint_gmm.weights_[4] / (joint_gmm.weights_[4] + joint_gmm.weights_[6]))
base_weights4[6] = goal_weight*(joint_gmm.weights_[6] / (joint_gmm.weights_[4] + joint_gmm.weights_[6]))
# Removing timers for cluster 4:
new_weights4 = {}
new_weights4[4] = 0
new_weights4[6] = 0
w1 = joint_gmm.weights_[0]
w2 = joint_gmm.weights_[5]
new_weights4[0] = joint_gmm.weights_[0] + (w1 / (w1+w2))*(joint_gmm.weights_[4] + joint_gmm.weights_[6])
new_weights4[5] = joint_gmm.weights_[5] + (w2 / (w1+w2))*(joint_gmm.weights_[4] + joint_gmm.weights_[6])
key = 'Data/Original16/GMMs/weekday_home_'+str(data.cluster_reorder_dendtoac[5])+'.p'
joint_gmm = pickle.load(open(key, "rb"))
# Work-from-home for cluster 4 - shift from evening timers to a late afternoon (4pm mean start) component
new_weights4_case4 = {}
new_weights4_case4[2] = joint_gmm.weights_[4] + joint_gmm.weights_[6] + joint_gmm.weights_[2]
new_weights4_case4[4] = 0
new_weights4_case4[6] = 0
# Augmenting timers for cluster 5:
base_weights5 = {}
base_weights5[0] = goal_weight*(joint_gmm.weights_[0] / (joint_gmm.weights_[0] + joint_gmm.weights_[1]))
base_weights5[1] = goal_weight*(joint_gmm.weights_[1] / (joint_gmm.weights_[0] + joint_gmm.weights_[1]))
# Removing timers for cluster 5:
new_weights5 = {}
new_weights5[0] = 0
new_weights5[1] = 0
w1 = joint_gmm.weights_[7]
w2 = joint_gmm.weights_[4]
new_weights5[7] = joint_gmm.weights_[7] + (w1 / (w1+w2))*(joint_gmm.weights_[0] + joint_gmm.weights_[1])
new_weights5[4] = joint_gmm.weights_[4] + (w2 / (w1+w2))*(joint_gmm.weights_[0] + joint_gmm.weights_[1])
# Work-from-home for cluster 5 - remove timers and shift to early evening (0 and 1 -> 2), shift some evening to 1pm (7 -> 6 and 4 ->3), trying to conserve total energy
new_weights5_case4 = {}
new_weights5_case4[0] = 0
new_weights5_case4[1] = 0
new_weights5_case4[2] = joint_gmm.weights_[0] + joint_gmm.weights_[1] + joint_gmm.weights_[2]
new_weights5_case4[4] = 0
new_weights5_case4[3] = joint_gmm.weights_[3] + joint_gmm.weights_[4]
new_weights5_case4[7] = 0
new_weights5_case4[6] = joint_gmm.weights_[6] + joint_gmm.weights_[7]
# Adjusting workplace behaviors:
key = 'Data/Original16/GMMs/weekday_work_'+str(data.cluster_reorder_dendtoac[3])+'.p'
joint_gmm = pickle.load(open(key, "rb"))
new_weights3_work = {}
new_weights3_work[1] = 0.5 * (joint_gmm.weights_[1] / (joint_gmm.weights_[1]+joint_gmm.weights_[3]))
new_weights3_work[3] = 0.5 * (joint_gmm.weights_[3] / (joint_gmm.weights_[1]+joint_gmm.weights_[3]))
key = 'Data/Original16/GMMs/weekday_work_'+str(data.cluster_reorder_dendtoac[5])+'.p'
joint_gmm = pickle.load(open(key, "rb"))
new_weights5_work = {}
new_weights5_work[3] = 0.5 * (joint_gmm.weights_[3] / (joint_gmm.weights_[3]+joint_gmm.weights_[5]))
new_weights5_work[5] = 0.5 * (joint_gmm.weights_[5] / (joint_gmm.weights_[3]+joint_gmm.weights_[5]))
# Run scenarios
data = DataSetConfigurations('Original16')
# Set 1
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
# Scenario 1
tic = time.time()
model = SPEECh(data)
config = SPEEChGeneralConfiguration(model)
new_weights_pg = dict(zip(counts_df['AC Cluster Number'], counts_df['Scen1']))
config.change_pg(new_weights=new_weights_pg) # Adjust distribution over driver groups
config.num_evs(total_evs) # Input number of EVs in simulation
config.groups()
config.change_ps_zg(data.cluster_reorder_dendtoac[3], 'Home', 'weekday', base_weights3)
config.change_ps_zg(data.cluster_reorder_dendtoac[4], 'Home', 'weekday', base_weights4)
config.change_ps_zg(data.cluster_reorder_dendtoac[5], 'Home', 'weekday', base_weights5)
config.run_all(weekday=weekday_option)
toc = time.time()
print('Ran 1 in '+str(np.round(toc-tic,2))+' seconds')
axes[0,0] = plot_together(config.total_load_segments, axes[0,0], fonts=20,
yax=True, xax=False, set_ymax=8.2, yticks=np.arange(0, 9), nolegend=True)
# Scenario 2
tic = time.time()
model = SPEECh(data)
config = SPEEChGeneralConfiguration(model)
new_weights_pg = dict(zip(counts_df['AC Cluster Number'], counts_df['Scen1']))
config.change_pg(new_weights=new_weights_pg) # Adjust distribution over driver groups
config.num_evs(total_evs) # Input number of EVs in simulation
config.groups()
config.change_ps_zg(data.cluster_reorder_dendtoac[3], 'Home', 'weekday', new_weights3)
config.change_ps_zg(data.cluster_reorder_dendtoac[4], 'Home', 'weekday', new_weights4)
config.change_ps_zg(data.cluster_reorder_dendtoac[5], 'Home', 'weekday', new_weights5)
config.run_all(weekday=weekday_option)
toc = time.time()
print('Ran 2 in '+str(np.round(toc-tic,2))+' seconds')
axes[0,1] = plot_together(config.total_load_segments, axes[0,1], fonts=20,
yax=False, xax=False, set_ymax=8.2, yticks=np.arange(0, 9), nolegend=False)
# Scenario 3
tic = time.time()
model = SPEECh(data)
config = SPEEChGeneralConfiguration(model)
new_weights_pg = dict(zip(counts_df['AC Cluster Number'], counts_df['Scen1']))
config.change_pg(new_weights=new_weights_pg) # Adjust distribution over driver groups
config.num_evs(total_evs) # Input number of EVs in simulation
config.groups()
config.change_ps_zg(data.cluster_reorder_dendtoac[3], 'Home', 'weekday', new_weights3)
config.change_ps_zg(data.cluster_reorder_dendtoac[4], 'Home', 'weekday', new_weights4)
config.change_ps_zg(data.cluster_reorder_dendtoac[5], 'Home', 'weekday', new_weights5)
config.change_ps_zg(data.cluster_reorder_dendtoac[3], 'Work', 'weekday', new_weights3_work)
config.change_ps_zg(data.cluster_reorder_dendtoac[5], 'Work', 'weekday', new_weights5_work)
config.run_all(weekday=weekday_option)
toc = time.time()
print('Ran 3 in '+str(np.round(toc-tic,2))+' seconds')
axes[1,0] = plot_together(config.total_load_segments, axes[1,0], fonts=20,
yax=True, set_ymax=8.2, yticks=np.arange(0, 9), nolegend=True)
# Scenario 4
tic = time.time()
model = SPEECh(data)
config = SPEEChGeneralConfiguration(model)
new_weights_pg = dict(zip(counts_df['AC Cluster Number'], counts_df['Scen1']))
config.change_pg(new_weights=new_weights_pg) # Adjust distribution over driver groups
config.num_evs(total_evs) # Input number of EVs in simulation
config.groups()
config.change_ps_zg(data.cluster_reorder_dendtoac[3], 'Home', 'weekday', new_weights3_case4)
config.change_ps_zg(data.cluster_reorder_dendtoac[4], 'Home', 'weekday', new_weights4_case4)
config.change_ps_zg(data.cluster_reorder_dendtoac[5], 'Home', 'weekday', new_weights5_case4)
config.change_ps_zg(data.cluster_reorder_dendtoac[3], 'Work', 'weekday', new_weights3_work)
config.change_ps_zg(data.cluster_reorder_dendtoac[5], 'Work', 'weekday', new_weights5_work)
config.run_all(weekday=weekday_option)
toc = time.time()
print('Ran 4 in '+str(np.round(toc-tic,2))+' seconds')
axes[1,1] = plot_together(config.total_load_segments, axes[1,1], fonts=20,
yax=False, set_ymax=8.2, yticks=np.arange(0, 9), nolegend=True)
plt.tight_layout()
plt.savefig('scenarios1234.pdf', bbox_inches='tight')
plt.close()
# Set 2
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
# Scenario 5
tic = time.time()
model = SPEECh(data)
config = SPEEChGeneralConfiguration(model)
new_weights_pg = dict(zip(counts_df['AC Cluster Number'], counts_df['Scen5']))
config.change_pg(new_weights=new_weights_pg) # Adjust distribution over driver groups
config.num_evs(total_evs) # Input number of EVs in simulation
config.groups()
config.change_ps_zg(data.cluster_reorder_dendtoac[3], 'Home', 'weekday', base_weights3)
config.change_ps_zg(data.cluster_reorder_dendtoac[4], 'Home', 'weekday', base_weights4)
config.change_ps_zg(data.cluster_reorder_dendtoac[5], 'Home', 'weekday', base_weights5)
config.run_all(weekday=weekday_option)
toc = time.time()
print('Ran 5 weekday in '+str(np.round(toc-tic,2))+' seconds')
axes[0,0] = plot_together(config.total_load_segments, axes[0,0], fonts=20,
yax=True, xax=False, set_ymax=9.2, yticks=np.arange(0, 10), nolegend=True)
tic = time.time()
model = SPEECh(data)
config = SPEEChGeneralConfiguration(model)
new_weights_pg = dict(zip(counts_df['AC Cluster Number'], counts_df['Scen5']))
config.change_pg(new_weights=new_weights_pg) # Adjust distribution over driver groups
config.num_evs(total_evs) # Input number of EVs in simulation
config.groups()
config.change_ps_zg(data.cluster_reorder_dendtoac[3], 'Home', 'weekday', base_weights3)
config.change_ps_zg(data.cluster_reorder_dendtoac[4], 'Home', 'weekday', base_weights4)
config.change_ps_zg(data.cluster_reorder_dendtoac[5], 'Home', 'weekday', base_weights5)
config.run_all(weekday='weekend')
toc = time.time()
print('Ran 5 weekend in '+str(np.round(toc-tic,2))+' seconds')
axes[0,1] = plot_together(config.total_load_segments, axes[0,1], fonts=20,
yax=False, xax=False, set_ymax=9.2, yticks=np.arange(0, 10), nolegend=False)
# Scenario 6
tic = time.time()
model = SPEECh(data)
config = SPEEChGeneralConfiguration(model)
new_weights_pg = dict(zip(counts_df['AC Cluster Number'], counts_df['Scen4']))
config.change_pg(new_weights=new_weights_pg) # Adjust distribution over driver groups
config.num_evs(total_evs) # Input number of EVs in simulation
config.groups()
config.change_ps_zg(data.cluster_reorder_dendtoac[3], 'Home', 'weekday', base_weights3)
config.change_ps_zg(data.cluster_reorder_dendtoac[4], 'Home', 'weekday', base_weights4)
config.change_ps_zg(data.cluster_reorder_dendtoac[5], 'Home', 'weekday', base_weights5)
config.run_all(weekday=weekday_option)
toc = time.time()
print('Ran 6 in '+str(np.round(toc-tic,2))+' seconds')
axes[1,0] = plot_together(config.total_load_segments, axes[1,0], fonts=20,
yax=True, set_ymax=9.2, yticks=np.arange(0, 10), nolegend=True)
# Scenario 7
tic = time.time()
model = SPEECh(data)
config = SPEEChGeneralConfiguration(model)
new_weights_pg = dict(zip(counts_df['AC Cluster Number'], counts_df['Scen6']))
config.change_pg(new_weights=new_weights_pg) # Adjust distribution over driver groups
config.num_evs(total_evs) # Input number of EVs in simulation
config.groups()
config.change_ps_zg(data.cluster_reorder_dendtoac[3], 'Home', 'weekday', base_weights3)
config.change_ps_zg(data.cluster_reorder_dendtoac[4], 'Home', 'weekday', base_weights4)
config.change_ps_zg(data.cluster_reorder_dendtoac[5], 'Home', 'weekday', base_weights5)
config.run_all(weekday=weekday_option)
toc = time.time()
print('Ran 7 in '+str(np.round(toc-tic,2))+' seconds')
axes[1,1] = plot_together(config.total_load_segments, axes[1,1], fonts=20,
yax=False, set_ymax=9.2, yticks=np.arange(0, 10), nolegend=True)
plt.tight_layout()
plt.savefig('scenarios5567.pdf', bbox_inches='tight')
plt.close()