diff --git a/sky/cli.py b/sky/cli.py index 362fa0edcf4..4c69a9012bf 100644 --- a/sky/cli.py +++ b/sky/cli.py @@ -3231,9 +3231,6 @@ def show_gpus( type is the lowest across all regions for both on-demand and spot instances. There may be multiple regions with the same lowest price. """ - # validation for the --cloud kubernetes - if cloud == 'kubernetes': - raise click.UsageError('Kubernetes does not have a service catalog.') # validation for the --region flag if region is not None and cloud is None: raise click.UsageError( @@ -3264,6 +3261,11 @@ def _output(): clouds=cloud, region_filter=region, ) + + if len(result) == 0 and cloud == 'kubernetes': + yield kubernetes_utils.NO_GPU_ERROR_MESSAGE + return + # "Common" GPUs for gpu in service_catalog.get_common_gpus(): if gpu in result: @@ -3320,6 +3322,10 @@ def _output(): case_sensitive=False) if len(result) == 0: + if cloud == 'kubernetes': + yield kubernetes_utils.NO_GPU_ERROR_MESSAGE + return + quantity_str = (f' with requested quantity {quantity}' if quantity else '') yield f'Resources \'{name}\'{quantity_str} not found. ' diff --git a/sky/clouds/service_catalog/__init__.py b/sky/clouds/service_catalog/__init__.py index 03d62144103..61b3e44919b 100644 --- a/sky/clouds/service_catalog/__init__.py +++ b/sky/clouds/service_catalog/__init__.py @@ -20,6 +20,13 @@ def _map_clouds_catalog(clouds: CloudFilter, method_name: str, *args, **kwargs): if clouds is None: clouds = list(_ALL_CLOUDS) + + # TODO(hemil): Remove this once the common service catalog + # functions are refactored from clouds/kubernetes.py to + # kubernetes_catalog.py and add kubernetes to _ALL_CLOUDS + if method_name == 'list_accelerators': + clouds.append('kubernetes') + single = isinstance(clouds, str) if single: clouds = [clouds] # type: ignore diff --git a/sky/clouds/service_catalog/kubernetes_catalog.py b/sky/clouds/service_catalog/kubernetes_catalog.py index 86033dab94e..2127bb5e37f 100644 --- a/sky/clouds/service_catalog/kubernetes_catalog.py +++ b/sky/clouds/service_catalog/kubernetes_catalog.py @@ -3,10 +3,15 @@ Kubernetes does not require a catalog of instances, but we need an image catalog mapping SkyPilot image tags to corresponding container image tags. """ +from typing import Dict, List, Optional, Set, Tuple -from typing import Optional +import pandas as pd +from sky import global_user_state +from sky.clouds import Kubernetes +from sky.clouds.service_catalog import CloudFilter from sky.clouds.service_catalog import common +from sky.utils import kubernetes_utils _PULL_FREQUENCY_HOURS = 7 @@ -26,3 +31,73 @@ def get_image_id_from_tag(tag: str, region: Optional[str]) -> Optional[str]: def is_image_tag_valid(tag: str, region: Optional[str]) -> bool: """Returns whether the image tag is valid.""" return common.is_image_tag_valid_impl(_image_df, tag, region) + + +def list_accelerators( + gpus_only: bool, + name_filter: Optional[str], + region_filter: Optional[str], + quantity_filter: Optional[int], + case_sensitive: bool = True +) -> Dict[str, List[common.InstanceTypeInfo]]: + k8s_cloud = Kubernetes() + if not any( + map(k8s_cloud.is_same_cloud, global_user_state.get_enabled_clouds()) + ) or not kubernetes_utils.check_credentials()[0]: + return {} + + has_gpu = kubernetes_utils.detect_gpu_resource() + if not has_gpu: + return {} + + label_formatter, _ = kubernetes_utils.detect_gpu_label_formatter() + if not label_formatter: + return {} + + accelerators: Set[Tuple[str, int]] = set() + key = label_formatter.get_label_key() + nodes = kubernetes_utils.get_kubernetes_nodes() + for node in nodes: + if key in node.metadata.labels: + accelerator_name = label_formatter.get_accelerator_from_label_value( + node.metadata.labels.get(key)) + accelerator_count = int( + node.status.allocatable.get('nvidia.com/gpu', 0)) + + if accelerator_name and accelerator_count > 0: + for count in range(1, accelerator_count + 1): + accelerators.add((accelerator_name, count)) + + result = [] + for accelerator_name, accelerator_count in accelerators: + result.append( + common.InstanceTypeInfo(cloud='Kubernetes', + instance_type=None, + accelerator_name=accelerator_name, + accelerator_count=accelerator_count, + cpu_count=None, + device_memory=None, + memory=None, + price=0.0, + spot_price=0.0, + region='kubernetes')) + + df = pd.DataFrame(result, + columns=[ + 'Cloud', 'InstanceType', 'AcceleratorName', + 'AcceleratorCount', 'vCPUs', 'DeviceMemoryGiB', + 'MemoryGiB', 'Price', 'SpotPrice', 'Region' + ]) + df['GpuInfo'] = True + + return common.list_accelerators_impl('Kubernetes', df, gpus_only, + name_filter, region_filter, + quantity_filter, case_sensitive) + + +def validate_region_zone( + region_name: Optional[str], + zone_name: Optional[str], + clouds: CloudFilter = None # pylint: disable=unused-argument +) -> Tuple[Optional[str], Optional[str]]: + return (region_name, zone_name) diff --git a/sky/utils/kubernetes_utils.py b/sky/utils/kubernetes_utils.py index 7d46024e961..c7c52b89cc7 100644 --- a/sky/utils/kubernetes_utils.py +++ b/sky/utils/kubernetes_utils.py @@ -30,6 +30,10 @@ 'T': 2**40, 'P': 2**50, } +NO_GPU_ERROR_MESSAGE = 'No GPUs found in Kubernetes cluster. \ +If your cluster contains GPUs, make sure nvidia.com/gpu resource is available on the nodes and the node labels for identifying GPUs \ +(e.g., skypilot.co/accelerators) are setup correctly. \ +To further debug, run: sky check.' logger = sky_logging.init_logger(__name__) @@ -79,6 +83,11 @@ def get_label_value(cls, accelerator: str) -> str: """Given a GPU type, returns the label value to be used""" raise NotImplementedError + @classmethod + def get_accelerator_from_label_value(cls, value: str) -> str: + """Given a label value, returns the GPU type""" + raise NotImplementedError + def get_gke_accelerator_name(accelerator: str) -> str: """Returns the accelerator name for GKE clusters @@ -112,6 +121,10 @@ def get_label_value(cls, accelerator: str) -> str: # See sky.utils.kubernetes.gpu_labeler. return accelerator.lower() + @classmethod + def get_accelerator_from_label_value(cls, value: str) -> str: + return value.upper() + class CoreWeaveLabelFormatter(GPULabelFormatter): """CoreWeave label formatter @@ -130,6 +143,10 @@ def get_label_key(cls) -> str: def get_label_value(cls, accelerator: str) -> str: return accelerator.upper() + @classmethod + def get_accelerator_from_label_value(cls, value: str) -> str: + return value + class GKELabelFormatter(GPULabelFormatter): """GKE label formatter @@ -148,6 +165,16 @@ def get_label_key(cls) -> str: def get_label_value(cls, accelerator: str) -> str: return get_gke_accelerator_name(accelerator) + @classmethod + def get_accelerator_from_label_value(cls, value: str) -> str: + if value.startswith('nvidia-tesla-'): + return value.replace('nvidia-tesla-', '').upper() + elif value.startswith('nvidia-'): + return value.replace('nvidia-', '').upper() + else: + raise ValueError( + f'Invalid accelerator name in GKE cluster: {value}') + # LABEL_FORMATTER_REGISTRY stores the label formats SkyPilot will try to # discover the accelerator type from. The order of the list is important, as