-
Notifications
You must be signed in to change notification settings - Fork 529
/
resnet_distributed_tf_app.py
93 lines (82 loc) · 3.3 KB
/
resnet_distributed_tf_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import getpass
import hashlib
import socket
import sys
from typing import List, Optional
import sky
def run(cluster: Optional[str] = None, cloud: Optional[str] = None):
if cluster is None:
# (username, last 4 chars of hash of hostname): for uniquefying users on
# shared-account cloud providers.
hostname_hash = hashlib.md5(
socket.gethostname().encode()).hexdigest()[-4:]
_user_and_host = f'{getpass.getuser()}-{hostname_hash}'
cluster = f'test-distributed-tf-{_user_and_host}'
with sky.Dag() as dag:
# Total Nodes, INCLUDING Head Node
num_nodes = 2
# The setup command. Will be run under the working directory.
setup = """
git clone https://github.com/concretevitamin/tpu || true
cd tpu && git checkout 9459fee
conda create -n resnet python=3.7 -y
conda activate resnet
conda install cudatoolkit=11.0 -y
pip install tensorflow==2.4.0 pyyaml
pip install protobuf==3.20
cd models && pip install -e .
"""
# The command to run. Will be run under the working directory.
# If a str, run the same command on all nodes.
# Generates per-node commands. Must be a self-contained lambda
# that doesn't refer to any external variables.
#
# Will be run under the working directory.
def run_fn(node_rank: int, ip_list: List[str]) -> Optional[str]:
import json
tf_config = {
'cluster': {
'worker': [ip + ':8008' for ip in ip_list]
},
'task': {
'type': 'worker',
'index': node_rank
}
}
str_tf_config = json.dumps(tf_config)
print(f'{str_tf_config!r}')
run = f"""
cd tpu
conda activate resnet
rm -rf resnet_model-dir
export TF_CONFIG={str_tf_config!r}
export XLA_FLAGS='--xla_gpu_cuda_data_dir=/usr/local/cuda/'
python models/official/resnet/resnet_main.py --use_tpu=False \
--mode=train --train_batch_size=256 --train_steps=500 \
--iterations_per_loop=125 \
--data_dir=gs://cloud-tpu-test-datasets/fake_imagenet \
--model_dir=resnet-model-dir \
--amp --xla --loss_scale=128"""
return run
train = sky.Task(
'train',
setup=setup,
num_nodes=num_nodes,
run=run_fn,
)
train.set_inputs('gs://cloud-tpu-test-datasets/fake_imagenet',
estimated_size_gigabytes=70)
train.set_outputs('resnet-model-dir', estimated_size_gigabytes=0.1)
train.set_resources(
sky.Resources(sky.clouds.CLOUD_REGISTRY.from_str(cloud),
accelerators='V100'))
sky.launch(dag, cluster_name=cluster, retry_until_up=True)
if __name__ == '__main__':
cluster = None
cloud = None
if len(sys.argv) > 1:
# For smoke test passing in a cluster name.
cluster = sys.argv[1]
if len(sys.argv) > 2:
cloud = sys.argv[2]
run(cluster, cloud)