
Stefan Krawczyk             historically:
CEO & Co-Founder
(YCW23) 
AICamp December 2023

👉 Five reasons why

Why you should build your 
GenAI/LLM apps using Hamilton
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(1) Everything’s new…
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(2) Pace of change 
& development 
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(3) All this requires 
SWE skills 

1. Challenges



Anyone remember this?
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GenAI/LLM Apps are no different
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SWE Development 
        

  is less this:

and more this:
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(3) SWE challenges

Get it wrong:

1. IC: Tech debt & pipeline/workflow/code inheritance 😱
2. Business: High cost to change & slower to develop.

Get it right:

1. IC: Ship more & get faster promotions.
2. Business: higher ROI
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(3) SWE challenges

Get it wrong:

1. IC: Tech debt & pipeline/workflow/code inheritance 😱
2. Business: High cost to change & slower to develop.

Get it right:

1. IC: Ship more & get faster promotions.
2. Business: higher ROI

1. Challenges

Characteristics:

1. Change with confidence → testing
2. Swappable parts  → modularity
3. Make tweaks/warm start  → reusability
4. Layer on your concerns → portability, pluggability, & extensibility



2. Hamilton



What is Hamilton?

Micro-orchestration framework
 for defining dataflows

using declarative functions
SWE best practices: ☑ testing ☑ documentation ☑ modularity/reuse ☑ iteration

     
  pip install sf-hamilton [came from Stitch Fix]

www.tryhamilton.dev ← uses pyodide!

2. Hamilton

http://www.tryhamilton.dev


Micro-orchestration vs Macro-orchestration

Macro-orchestration is this whole thing (ETLs, web service requests, etc):

Micro-orchestration handles what happens within this step

2. Hamilton



What do you mean by dataflow?

Dataflows represent how your procedural code flows:
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['spend_per_signup'] = df['spend']/df['signups']
spend_mean = df['spend'].mean()
df['spend_zero_mean'] = df['spend'] - spend_mean
spend_std_dev = df['spend'].std()
df['spend_zero_mean_unit_variance'] = df['spend_zero_mean']/spend_std_dev

2. Hamilton



Declarative functions?

Functions declare:
● What they create in the dataflow.
● What dependencies are required for computation.

You don’t run the functions directly.

> When you read the function, you’ll understand what it does 
and what it needs.

2. Hamilton



Instead of

You declare

Inputs == Function Arguments

Old Way vs. Hamilton Paradigm:

20

c = f"Some prompt using {a} & {b}"
d = custom_logic(llm_api_call(c))

def c(a: str, b: int) -> str:
   """Creates prompt"""
   return f"Some prompt using {a} & {b}"

def d(c: str) -> str:
   """Transform/send to LLM ..."""
   response = custom_logic(llm_api_call(c))
   return response

Outputs == Function Name

2. Hamilton



2. Hamilton

Full Hello World          (Note: works for any python object type)
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# llm_chain.py
def c(a: str, b: int) -> str:
   """Creates prompt"""
   return f"Some prompt using {a} & {b}"

def d(c: str) -> str:
   """Transform/send to LLM ..."""
   response = custom_logic(llm_api_call(c))
   return response

# run.py
from hamilton import driver
import llm_chain
dr = driver.Driver({'a': ..., 'b': ...}, llm_chain, adapter=...)
result = dr.execute(['c', 'd']) 
print(result)

Functions

Driver says what/when to execute

str

str

str
str



2. Hamilton

Full Hello World          (Note: works for any python object type)
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# llm_chain.py
def c(a: str, b: int) -> str:
   """Creates prompt"""
   return f"Some prompt using {a} & {b}"

def d(c: str) -> str:
   """Transform/send to LLM ..."""
   response = custom_logic(llm_api_call(c))
   return response

# run.py
from hamilton import driver
import llm_chain
dr = driver.Driver({'a': ..., 'b': ...}, llm_chain, adapter=...)
result = dr.execute(['c', 'd']) 
print(result)

Functions

Driver says what/when to execute

str

str

str
str

🤔 Yes, you can use it to 
replace (even use with):

Langchain
Llama Index

etc.



Things to mention, but won’t really cover:

We also have decorators that you add to functions that…

● @tag # attach metadata
● @parameterize # curry + repeat a function
● @extract_columns # one dataframe -> multiple series
● @extract_outputs # one dict -> multiple outputs
● @check_output # data validation; very lightweight 
● @config.when # conditional transforms
● @subdag # parameterize parts of your DAG 

2. Hamilton



Some Hamilton users we know of

2. Hamilton



Five Reasons

2. Hamilton



1: One  less tool to learn

With Hamilton you can describe & glue together:

1. Data processing
2. Feature engineering
3. Machine learning
4. GenAI/LLM
5. Web request
6. Etc

pipelines / workflows / dataflows / etc.

2. Hamilton



2: Portable, Pluggable &
Extensible
Your code is portable & runs & scales 
anywhere python runs:

2. Hamilton

Hamilton was designed to help keep logic 
from platform concerns separate.

👀 VLDB Workshop Papers



3: Lineage as Code

1. Version your whole flow in git.
a. Prompts
b. Model/API versions
c. Processing logic

2. Debug, onboard, explain 
faster.

2. Hamilton



4: Modularity & Reuse

2. Hamilton



4: Modularity & Reuse

1. Straightforward to compose & reuse flows.

2. Hamilton

def relevant_docs(
   nn_ids: list[int], 
   db_client: object) -> str:
   return ... 



4: Modularity & Reuse

1. Straightforward to compose & reuse flows.
2. Easy to switch between multiple “implementations”

a. Can be surgical with changes.
b. Understand what is run when.

3.

2. Hamilton

@config.when(...)
def nn_ids__v1(top_k: int, 
   embedding: list[float], 
   vdb_client: object) -> str:
   return ... 



5: Testing & Documentation

Testing: easier to unit & integration test (e.g. evals in CI/CD)

# use_case.py

def example_system_prompt(a: str, b: int) -> str:
   """More documentation would go here"""
   return f"Some prompt using {a} & {b}"

# test_use_case.py

def test_example_system_prompt():
   actual = example_system_prompt("some input", 2.0)
   expected = f"Some prompt using some input & 2.0"
   assert actual == expected



5: Testing & Documentation

Testing: easier to unit & integration test (e.g. evals in CI/CD)

Data Quality Tests: runtime checks via annotation*; Pandera supported. 
Pydantic on roadmap.

# use_case.py

@check_output(data_type=str, some_property=value)
def example_system_prompt(a: str, b: int) -> str:
   """More documentation would go here"""
   return f"Some prompt using {a} & {b}"

2. Hamilton



5: Testing & Documentation

Testing: easier to unit & integration test (e.g. evals in CI/CD)

Data Quality Tests: runtime checks via annotation*; Pandera supported. 
Pydantic on roadmap.

Self-documenting: naming, doc strings, annotations, & visualization
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@tag(owner='Data-Science', pii='False')
@check_output(data_type=str, some_property=value)
def example_system_prompt(a: str, b: int) -> str:
   """More documentation would go here"""
   return f"Some prompt using {a} & {b}"
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5: Testing & Documentation

Testing: easier to unit & integration test (e.g. evals in CI/CD)

Data Quality Tests: runtime checks via annotation*; Pandera supported. 
Pydantic on roadmap.

Self-documenting: naming, doc strings, annotations, & visualization

# use_case.py

@tag(owner='Data-Science', pii='False')
@check_output(data_type=str, some_property=value)
def example_system_prompt(a: str, b: int) -> str:
   """More documentation would go here"""
   return f"Some prompt using {a} & {b}"

2. Hamilton dr.visualize_execution(...)



Hamilton: build your GenAI/LLM apps on Hamilton

Problem:

● Pace of change & iteration → need good SWE practices to not 💥
With Hamilton → 🏎 :

1. One tool – for data, web request, ML, and GenAI/LLM work.
2. You can port, plug and extend your code and the framework.
3. Version, debug & understand faster with lineage as code.
4. Naturally have modular and reusable, without much 🤔.
5. Never complain again about testing & documentation.

Summary



Want the “langsmith” equivalent but for Hamilton? 

www.dagworks.io
Versioning, Lineage, Catalog, Observability

[Free trial]

(1Յ Stop by our table 
for a demo

(2Յ Come see a toy GenAI app 
built with Hamilton

(3Յ 📣 we’re looking for a 
GenAI/LLM partner

http://www.dagworks.io


pip install sf-hamilton

▶: tryhamilton.dev  ← runs 🐍 in the browser!

▶: hub.dagworks.io  ← our bank of dataflows to get started in 3 lines

🤓: blog.dagworks.io ← various posts e.g. RAG, prompts, etc.

⭐: https://github.com/dagworks-inc/hamilton (see examples/)

📣: Join us on slack

Get started:HAMILTON

Questions?

http://tryhamilton.dev
https://hub.dagworks.io
https://blog.dagworks.io
https://github.com/dagworks-inc/hamilton
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg
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