
Stefan Krawczyk historically:
CEO & Co-Founder
(YCW23)
AICamp December 2023

👉 Five reasons why

Why you should build your
GenAI/LLM apps using Hamilton

Some questions
from me :)

Agenda
1. Challenges
2. Hamilton

1. Challenges

(1) Everything’s new…

1. Challenges

(2) Pace of change
& development

1. Challenges

(3) All this requires
SWE skills

1. Challenges

Anyone remember this?

1. Challenges

GenAI/LLM Apps are no different

Vector
DBs

Safety Filters

Fine-tuning
Infrastructure

Synthetic
Validation

Prompt
Tuning Tools

Control Flow
& Reasoning

Loops

Foundational
Model

Serving

Embeddings
Human eval

Prompt
Tuning Tools

1. Challenges Slide inspired by D. Sculley CEO of Kaggle

Document
Curation

Synthetic
Data creation

SWE Development

 is less this:

and more this:

1. Challenges

(3) SWE challenges

Get it wrong:

1. IC: Tech debt & pipeline/workflow/code inheritance 😱
2. Business: High cost to change & slower to develop.

Get it right:

1. IC: Ship more & get faster promotions.
2. Business: higher ROI

1. Challenges

(3) SWE challenges

Get it wrong:

1. IC: Tech debt & pipeline/workflow/code inheritance 😱
2. Business: High cost to change & slower to develop.

Get it right:

1. IC: Ship more & get faster promotions.
2. Business: higher ROI

1. Challenges

Characteristics:

1. Change with confidence → testing
2. Swappable parts → modularity
3. Make tweaks/warm start → reusability
4. Layer on your concerns → portability, pluggability, & extensibility

2. Hamilton

What is Hamilton?

Micro-orchestration framework
 for defining dataflows

using declarative functions
SWE best practices: ☑ testing ☑ documentation ☑ modularity/reuse ☑ iteration

 pip install sf-hamilton [came from Stitch Fix]

www.tryhamilton.dev ← uses pyodide!

2. Hamilton

http://www.tryhamilton.dev

Micro-orchestration vs Macro-orchestration

Macro-orchestration is this whole thing (ETLs, web service requests, etc):

Micro-orchestration handles what happens within this step

2. Hamilton

What do you mean by dataflow?

Dataflows represent how your procedural code flows:
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['spend_per_signup'] = df['spend']/df['signups']
spend_mean = df['spend'].mean()
df['spend_zero_mean'] = df['spend'] - spend_mean
spend_std_dev = df['spend'].std()
df['spend_zero_mean_unit_variance'] = df['spend_zero_mean']/spend_std_dev

2. Hamilton

Declarative functions?

Functions declare:
● What they create in the dataflow.
● What dependencies are required for computation.

You don’t run the functions directly.

> When you read the function, you’ll understand what it does
and what it needs.

2. Hamilton

Instead of

You declare

Inputs == Function Arguments

Old Way vs. Hamilton Paradigm:

20

c = f"Some prompt using {a} & {b}"
d = custom_logic(llm_api_call(c))

def c(a: str, b: int) -> str:
 """Creates prompt"""
 return f"Some prompt using {a} & {b}"

def d(c: str) -> str:
 """Transform/send to LLM ..."""
 response = custom_logic(llm_api_call(c))
 return response

Outputs == Function Name

2. Hamilton

2. Hamilton

Full Hello World (Note: works for any python object type)

21

llm_chain.py
def c(a: str, b: int) -> str:
 """Creates prompt"""
 return f"Some prompt using {a} & {b}"

def d(c: str) -> str:
 """Transform/send to LLM ..."""
 response = custom_logic(llm_api_call(c))
 return response

run.py
from hamilton import driver
import llm_chain
dr = driver.Driver({'a': ..., 'b': ...}, llm_chain, adapter=...)
result = dr.execute(['c', 'd'])
print(result)

Functions

Driver says what/when to execute

str

str

str
str

2. Hamilton

Full Hello World (Note: works for any python object type)

22

llm_chain.py
def c(a: str, b: int) -> str:
 """Creates prompt"""
 return f"Some prompt using {a} & {b}"

def d(c: str) -> str:
 """Transform/send to LLM ..."""
 response = custom_logic(llm_api_call(c))
 return response

run.py
from hamilton import driver
import llm_chain
dr = driver.Driver({'a': ..., 'b': ...}, llm_chain, adapter=...)
result = dr.execute(['c', 'd'])
print(result)

Functions

Driver says what/when to execute

str

str

str
str

🤔 Yes, you can use it to
replace (even use with):

Langchain
Llama Index

etc.

Things to mention, but won’t really cover:

We also have decorators that you add to functions that…

● @tag # attach metadata
● @parameterize # curry + repeat a function
● @extract_columns # one dataframe -> multiple series
● @extract_outputs # one dict -> multiple outputs
● @check_output # data validation; very lightweight
● @config.when # conditional transforms
● @subdag # parameterize parts of your DAG

2. Hamilton

Some Hamilton users we know of

2. Hamilton

Five Reasons

2. Hamilton

1: One less tool to learn

With Hamilton you can describe & glue together:

1. Data processing
2. Feature engineering
3. Machine learning
4. GenAI/LLM
5. Web request
6. Etc

pipelines / workflows / dataflows / etc.

2. Hamilton

2: Portable, Pluggable &
Extensible
Your code is portable & runs & scales
anywhere python runs:

2. Hamilton

Hamilton was designed to help keep logic
from platform concerns separate.

👀 VLDB Workshop Papers

3: Lineage as Code

1. Version your whole flow in git.
a. Prompts
b. Model/API versions
c. Processing logic

2. Debug, onboard, explain
faster.

2. Hamilton

4: Modularity & Reuse

2. Hamilton

4: Modularity & Reuse

1. Straightforward to compose & reuse flows.

2. Hamilton

def relevant_docs(
 nn_ids: list[int],
 db_client: object) -> str:
 return ...

4: Modularity & Reuse

1. Straightforward to compose & reuse flows.
2. Easy to switch between multiple “implementations”

a. Can be surgical with changes.
b. Understand what is run when.

3.

2. Hamilton

@config.when(...)
def nn_ids__v1(top_k: int,
 embedding: list[float],
 vdb_client: object) -> str:
 return ...

5: Testing & Documentation

Testing: easier to unit & integration test (e.g. evals in CI/CD)

use_case.py

def example_system_prompt(a: str, b: int) -> str:
 """More documentation would go here"""
 return f"Some prompt using {a} & {b}"

test_use_case.py

def test_example_system_prompt():
 actual = example_system_prompt("some input", 2.0)
 expected = f"Some prompt using some input & 2.0"
 assert actual == expected

5: Testing & Documentation

Testing: easier to unit & integration test (e.g. evals in CI/CD)

Data Quality Tests: runtime checks via annotation*; Pandera supported.
Pydantic on roadmap.

use_case.py

@check_output(data_type=str, some_property=value)
def example_system_prompt(a: str, b: int) -> str:
 """More documentation would go here"""
 return f"Some prompt using {a} & {b}"

2. Hamilton

5: Testing & Documentation

Testing: easier to unit & integration test (e.g. evals in CI/CD)

Data Quality Tests: runtime checks via annotation*; Pandera supported.
Pydantic on roadmap.

Self-documenting: naming, doc strings, annotations, & visualization

use_case.py

@tag(owner='Data-Science', pii='False')
@check_output(data_type=str, some_property=value)
def example_system_prompt(a: str, b: int) -> str:
 """More documentation would go here"""
 return f"Some prompt using {a} & {b}"

2. Hamilton

5: Testing & Documentation

Testing: easier to unit & integration test (e.g. evals in CI/CD)

Data Quality Tests: runtime checks via annotation*; Pandera supported.
Pydantic on roadmap.

Self-documenting: naming, doc strings, annotations, & visualization

use_case.py

@tag(owner='Data-Science', pii='False')
@check_output(data_type=str, some_property=value)
def example_system_prompt(a: str, b: int) -> str:
 """More documentation would go here"""
 return f"Some prompt using {a} & {b}"

2. Hamilton dr.visualize_execution(...)

Hamilton: build your GenAI/LLM apps on Hamilton

Problem:

● Pace of change & iteration → need good SWE practices to not 💥
With Hamilton → 🏎 :

1. One tool – for data, web request, ML, and GenAI/LLM work.
2. You can port, plug and extend your code and the framework.
3. Version, debug & understand faster with lineage as code.
4. Naturally have modular and reusable, without much 🤔.
5. Never complain again about testing & documentation.

Summary

Want the “langsmith” equivalent but for Hamilton?

www.dagworks.io
Versioning, Lineage, Catalog, Observability

[Free trial]

(1Յ Stop by our table
for a demo

(2Յ Come see a toy GenAI app
built with Hamilton

(3Յ 📣 we’re looking for a
GenAI/LLM partner

http://www.dagworks.io

pip install sf-hamilton

▶: tryhamilton.dev ← runs 🐍 in the browser!

▶: hub.dagworks.io ← our bank of dataflows to get started in 3 lines

🤓: blog.dagworks.io ← various posts e.g. RAG, prompts, etc.

⭐: https://github.com/dagworks-inc/hamilton (see examples/)

📣: Join us on slack

Get started:HAMILTON

Questions?

http://tryhamilton.dev
https://hub.dagworks.io
https://blog.dagworks.io
https://github.com/dagworks-inc/hamilton
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg

pip install sf-hamilton

▶: tryhamilton.dev ← runs 🐍 in the browser!

▶: hub.dagworks.io ← our bank of dataflows to get started in 3 lines

🤓: blog.dagworks.io ← various posts e.g. RAG, prompts, etc.

⭐: https://github.com/dagworks-inc/hamilton (see examples/)

📣: Join us on slack

Get started:HAMILTON

Questions?

http://tryhamilton.dev
https://hub.dagworks.io
https://blog.dagworks.io
https://github.com/dagworks-inc/hamilton
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg

pip install sf-hamilton

▶: tryhamilton.dev ← runs 🐍 in the browser!

▶: hub.dagworks.io ← our bank of dataflows to get started in 3 lines

🤓: blog.dagworks.io ← various posts e.g. RAG, prompts, etc.

⭐: https://github.com/dagworks-inc/hamilton (see examples/)

📣: Join us on slack

Get started:HAMILTON

Questions?

http://tryhamilton.dev
https://hub.dagworks.io
https://blog.dagworks.io
https://github.com/dagworks-inc/hamilton
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg

pip install sf-hamilton

▶: tryhamilton.dev ← runs 🐍 in the browser!

▶: hub.dagworks.io ← our bank of dataflows to get started in 3 lines

🤓: blog.dagworks.io ← various posts e.g. RAG, prompts, etc.

⭐: https://github.com/dagworks-inc/hamilton (see examples/)

📣: Join us on slack

Get started:HAMILTON

Questions?

http://tryhamilton.dev
https://hub.dagworks.io
https://blog.dagworks.io
https://github.com/dagworks-inc/hamilton
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg

pip install sf-hamilton

▶: tryhamilton.dev ← runs 🐍 in the browser!

▶: hub.dagworks.io ← our bank of dataflows to get started in 3 lines

🤓: blog.dagworks.io ← various posts e.g. RAG, prompts, etc.

⭐: https://github.com/dagworks-inc/hamilton (see examples/)

📣: Join us on slack

Get started:HAMILTON

Questions?

http://tryhamilton.dev
https://hub.dagworks.io
https://blog.dagworks.io
https://github.com/dagworks-inc/hamilton
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg

pip install sf-hamilton

▶: tryhamilton.dev ← runs 🐍 in the browser!

▶: hub.dagworks.io ← our bank of dataflows to get started in 3 lines

🤓: blog.dagworks.io ← various posts e.g. RAG, prompts, etc.

⭐: https://github.com/dagworks-inc/hamilton (see examples/)

📣: Join us on slack

Get started:HAMILTON

Questions?

http://tryhamilton.dev
https://hub.dagworks.io
https://blog.dagworks.io
https://github.com/dagworks-inc/hamilton
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg

