-
Notifications
You must be signed in to change notification settings - Fork 3
/
trainer_whisper.py
137 lines (107 loc) · 3.8 KB
/
trainer_whisper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from model import WhisperModel
from dataset import S2IMELDataset, collate_mel_fn
import torch
import torch.nn as nn
import torch.nn.functional as F
import pytorch_lightning as pl
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import WandbLogger
# SEED
SEED=100
pl.utilities.seed.seed_everything(SEED)
torch.manual_seed(SEED)
# update the wandb online/offline model and CUDA device
import os
os.environ['WANDB_MODE'] = 'online'
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="0"
class LightningModel(pl.LightningModule):
def __init__(self,):
super().__init__()
# tiny/small model
self.model = WhisperModel("small.en")
def forward(self, x):
return self.model(x)
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=1e-5)
return [optimizer]
def loss_fn(self, prediction, targets):
return nn.CrossEntropyLoss()(prediction, targets)
def training_step(self, batch, batch_idx):
x, y = batch
y = y.view(-1)
logits = self(x)
probs = F.softmax(logits, dim=1)
loss = self.loss_fn(logits, y)
winners = logits.argmax(dim=1)
corrects = (winners == y)
acc = corrects.sum().float()/float(logits.size(0))
self.log('train/loss', loss, on_step=False, on_epoch=True, prog_bar=True)
self.log('train/acc', acc, on_step=False, on_epoch=True, prog_bar=True)
return {
'loss':loss,
'acc':acc
}
def validation_step(self, batch, batch_idx):
x, y = batch
y = y.view(-1)
logits = self(x)
loss = self.loss_fn(logits, y)
winners = logits.argmax(dim=1)
corrects = (winners == y)
acc = corrects.sum().float() / float( logits.size(0))
self.log('val/loss' , loss, on_step=False, on_epoch=True, prog_bar=True)
self.log('val/acc',acc, on_step=False, on_epoch=True, prog_bar=True)
return {'val_loss':loss,
'val_acc':acc,
}
if __name__ == "__main__":
# skit-s2i dataset
dataset = S2IMELDataset(
csv_path="/root/Speech2Intent/dataset/speech-to-intent/train.csv",
wav_dir_path="/root/Speech2Intent/dataset/speech-to-intent/"
)
# train-validation split
train_len = int(len(dataset) * 0.90)
val_len = len(dataset) - train_len
print(train_len, val_len)
train_dataset, val_dataset = torch.utils.data.random_split(dataset, [train_len, val_len], generator=torch.Generator().manual_seed(SEED))
# dataloaders
trainloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=8,
shuffle=True,
num_workers=4,
collate_fn = collate_mel_fn,
)
valloader = torch.utils.data.DataLoader(
val_dataset,
batch_size=8,
num_workers=4,
collate_fn = collate_mel_fn,
)
model = LightningModel()
# update the logger to Wandb or Tensorboard
run_name = "whisper-asr-small"
logger = WandbLogger(
name=run_name,
project='S2I-baseline'
)
model_checkpoint_callback = ModelCheckpoint(
dirpath='checkpoints',
monitor='val/acc',
mode='max',
verbose=1,
filename=run_name + "-epoch={epoch}.ckpt")
trainer = Trainer(
fast_dev_run=False, # true for dev run
gpus=1,
max_epochs=50,
checkpoint_callback=True,
callbacks=[
model_checkpoint_callback,
],
logger=logger,
)
trainer.fit(model, train_dataloader=trainloader, val_dataloaders=valloader)