-
Notifications
You must be signed in to change notification settings - Fork 3
/
model.py
74 lines (57 loc) · 2.35 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import torch
import torch.nn as nn
from transformers import Wav2Vec2Processor, Wav2Vec2Model, Wav2Vec2ForCTC, HubertModel, HubertForCTC
import whisper
class WhisperModel(nn.Module):
def __init__(self, model_type="small.en", n_class=14):
super().__init__()
self.encoder = whisper.load_model(model_type).encoder
for param in self.encoder.parameters():
param.requires_grad = True
feature_dim = 768
# 512 = tiny.en,
# 768 = small.en
self.intent_classifier = nn.Sequential(
nn.Linear(feature_dim, n_class)
)
def forward(self, x):
x = self.encoder(x)
x = torch.mean(x, dim=1)
intent = self.intent_classifier(x)
return intent
class Wav2VecModel(nn.Module):
def __init__(self, ):
super().__init__()
self.processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h")
self.encoder = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-large-960h")
for param in self.encoder.parameters():
param.requires_grad = False
for param in self.encoder.encoder.parameters():
param.requires_grad = True
self.intent_classifier = nn.Sequential(
nn.Linear(1024, 14),
)
def forward(self, x):
x = self.processor(x, sampling_rate=16000, return_tensors="pt")["input_values"].squeeze(0).to("cuda")
x = self.encoder(x).last_hidden_state
x = torch.mean(x, dim=1)
logits = self.intent_classifier(x)
return logits
class HubertSSLModel(nn.Module):
def __init__(self, ):
super().__init__()
self.processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
self.encoder = HubertModel.from_pretrained("facebook/hubert-large-ll60k")
for param in self.encoder.parameters():
param.requires_grad = False
for param in self.encoder.encoder.parameters():
param.requires_grad = True
self.intent_classifier = nn.Sequential(
nn.Linear(1024, 14),
)
def forward(self, x):
x = self.processor(x, sampling_rate=16000, return_tensors="pt")["input_values"].squeeze(0).to("cuda")
x = self.encoder(x).last_hidden_state
x = torch.mean(x, dim=1)
logits = self.intent_classifier(x)
return logits