-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathlfw_adverserial.lua
326 lines (278 loc) · 10.7 KB
/
lfw_adverserial.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
require 'torch'
require 'nn'
require 'cunn'
require 'optim'
require 'pl'
local adversarial = {}
function rmsprop(opfunc, x, config, state)
-- (0) get/update state
local config = config or {}
local state = state or config
local lr = config.learningRate or 1e-2
local alpha = config.alpha or 0.9
local epsilon = config.epsilon or 1e-8
-- (1) evaluate f(x) and df/dx
local fx, dfdx = opfunc(x)
if config.optimize == true then
-- (2) initialize mean square values and square gradient storage
if not state.m then
state.m = torch.Tensor():typeAs(x):resizeAs(dfdx):zero()
state.tmp = torch.Tensor():typeAs(x):resizeAs(dfdx)
end
-- (3) calculate new (leaky) mean squared values
state.m:mul(alpha)
state.m:addcmul(1.0-alpha, dfdx, dfdx)
-- (4) perform update
state.tmp:sqrt(state.m):add(epsilon)
-- only opdate when optimize is true
if config.numUpdates < 10 then
io.write(" ", lr/50.0, " ")
x:addcdiv(-lr/50.0, dfdx, state.tmp)
elseif config.numUpdates < 30 then
io.write(" ", lr/5.0, " ")
x:addcdiv(-lr /5.0, dfdx, state.tmp)
else
io.write(" ", lr, " ")
x:addcdiv(-lr, dfdx, state.tmp)
end
end
config.numUpdates = config.numUpdates +1
-- return x*, f(x) before optimization
return x, {fx}
end
function adam(opfunc, x, config, state)
--print('ADAM')
-- (0) get/update state
local config = config or {}
local state = state or config
local lr = config.learningRate or 0.001
local beta1 = config.beta1 or 0.9
local beta2 = config.beta2 or 0.999
local epsilon = config.epsilon or 1e-8
-- (1) evaluate f(x) and df/dx
local fx, dfdx = opfunc(x)
if config.optimize == true then
-- Initialization
state.t = state.t or 0
-- Exponential moving average of gradient values
state.m = state.m or x.new(dfdx:size()):zero()
-- Exponential moving average of squared gradient values
state.v = state.v or x.new(dfdx:size()):zero()
-- A tmp tensor to hold the sqrt(v) + epsilon
state.denom = state.denom or x.new(dfdx:size()):zero()
state.t = state.t + 1
-- Decay the first and second moment running average coefficient
state.m:mul(beta1):add(1-beta1, dfdx)
state.v:mul(beta2):addcmul(1-beta2, dfdx, dfdx)
state.denom:copy(state.v):sqrt():add(epsilon)
local biasCorrection1 = 1 - beta1^state.t
local biasCorrection2 = 1 - beta2^state.t
local fac = 1
if config.numUpdates < 10 then
fac = 50.0
elseif config.numUpdates < 30 then
fac = 5.0
else
fac = 1.0
end
io.write(" ", lr/fac, " ")
local stepSize = (lr/fac) * math.sqrt(biasCorrection2)/biasCorrection1
-- (2) update x
x:addcdiv(-stepSize, state.m, state.denom)
end
config.numUpdates = config.numUpdates +1
-- return x*, f(x) before optimization
return x, {fx}
end
-- training function
function adversarial.train(dataset, N)
model_G:training()
model_D:training()
epoch = epoch or 1
local N = N or dataset:size()[1]
local dataBatchSize = opt.batchSize / 2
local time = sys.clock()
-- do one epoch
print('\n<trainer> on training set:')
print("<trainer> online epoch # " .. epoch .. ' [batchSize = ' .. opt.batchSize .. ' lr = ' .. sgdState_D.learningRate .. ', momentum = ' .. sgdState_D.momentum .. ']')
for t = 1,N,dataBatchSize do
local inputs = torch.Tensor(opt.batchSize, opt.geometry[1], opt.geometry[2], opt.geometry[3])
local targets = torch.Tensor(opt.batchSize)
local noise_inputs = torch.Tensor(opt.batchSize, opt.noiseDim)
----------------------------------------------------------------------
-- create closure to evaluate f(X) and df/dX of discriminator
local fevalD = function(x)
collectgarbage()
if x ~= parameters_D then -- get new parameters
parameters_D:copy(x)
end
gradParameters_D:zero() -- reset gradients
-- forward pass
local outputs = model_D:forward(inputs)
-- err_F = criterion:forward(outputs:narrow(1, 1, opt.batchSize / 2), targets:narrow(1, 1, opt.batchSize / 2))
-- err_R = criterion:forward(outputs:narrow(1, (opt.batchSize / 2) + 1, opt.batchSize / 2), targets:narrow(1, (opt.batchSize / 2) + 1, opt.batchSize / 2))
err_R = criterion:forward(outputs:narrow(1, 1, opt.batchSize / 2), targets:narrow(1, 1, opt.batchSize / 2))
err_F = criterion:forward(outputs:narrow(1, (opt.batchSize / 2) + 1, opt.batchSize / 2), targets:narrow(1, (opt.batchSize / 2) + 1, opt.batchSize / 2))
local margin = 0.3
sgdState_D.optimize = true
sgdState_G.optimize = true
if err_F < margin or err_R < margin then
sgdState_D.optimize = false
end
if err_F > (1.0-margin) or err_R > (1.0-margin) then
sgdState_G.optimize = false
end
if sgdState_G.optimize == false and sgdState_D.optimize == false then
sgdState_G.optimize = true
sgdState_D.optimize = true
end
--print(monA:size(), tarA:size())
io.write("v1_lfw| R:", err_R," F:", err_F, " ")
local f = criterion:forward(outputs, targets)
-- backward pass
local df_do = criterion:backward(outputs, targets)
model_D:backward(inputs, df_do)
-- penalties (L1 and L2):
if opt.coefL1 ~= 0 or opt.coefL2 ~= 0 then
local norm,sign= torch.norm,torch.sign
-- Loss:
f = f + opt.coefL1 * norm(parameters_D,1)
f = f + opt.coefL2 * norm(parameters_D,2)^2/2
-- Gradients:
gradParameters_D:add( sign(parameters_D):mul(opt.coefL1) + parameters_D:clone():mul(opt.coefL2) )
end
-- update confusion (add 1 since targets are binary)
for i = 1,opt.batchSize do
local c
if outputs[i][1] > 0.5 then c = 2 else c = 1 end
confusion:add(c, targets[i]+1)
end
--print('grad D', gradParameters_D:norm())
return f,gradParameters_D
end
----------------------------------------------------------------------
-- create closure to evaluate f(X) and df/dX of generator
local fevalG = function(x)
collectgarbage()
if x ~= parameters_G then -- get new parameters
parameters_G:copy(x)
end
gradParameters_G:zero() -- reset gradients
-- forward pass
local samples = model_G:forward(noise_inputs)
local outputs = model_D:forward(samples)
local f = criterion:forward(outputs, targets)
io.write("G:",f, " G:", tostring(sgdState_G.optimize)," D:",tostring(sgdState_D.optimize)," ", sgdState_G.numUpdates, " ", sgdState_D.numUpdates , "\n")
io.flush()
-- backward pass
local df_samples = criterion:backward(outputs, targets)
model_D:backward(samples, df_samples)
local df_do = model_D.modules[1].gradInput
model_G:backward(noise_inputs, df_do)
print('gradParameters_G', gradParameters_G:norm())
return f,gradParameters_G
end
----------------------------------------------------------------------
-- (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
-- Get half a minibatch of real, half fake
for k=1,opt.K do
-- (1.1) Real data
local k = 1
for i = t,math.min(t+dataBatchSize-1,dataset:size()[1]) do
local idx = math.random(dataset:size()[1])
local sample = dataset[idx]
inputs[k] = sample:clone()
k = k + 1
end
targets[{{1,dataBatchSize}}]:fill(1)
-- (1.2) Sampled data
noise_inputs:normal(0, 1)
local samples = model_G:forward(noise_inputs[{{dataBatchSize+1,opt.batchSize}}])
for i = 1, dataBatchSize do
inputs[k] = samples[i]:clone()
k = k + 1
end
targets[{{dataBatchSize+1,opt.batchSize}}]:fill(0)
rmsprop(fevalD, parameters_D, sgdState_D)
end -- end for K
----------------------------------------------------------------------
-- (2) Update G network: maximize log(D(G(z)))
noise_inputs:normal(0, 1)
targets:fill(1)
rmsprop(fevalG, parameters_G, sgdState_G)
-- display progress
xlua.progress(t, dataset:size()[1])
end -- end for loop over dataset
-- time taken
time = sys.clock() - time
time = time / dataset:size()[1]
print("<trainer> time to learn 1 sample = " .. (time*1000) .. 'ms')
-- print confusion matrix
print(confusion)
trainLogger:add{['% mean class accuracy (train set)'] = confusion.totalValid * 100}
confusion:zero()
-- save/log current net
if epoch % opt.saveFreq == 0 then
local filename = paths.concat(opt.save, 'adversarial.net')
os.execute('mkdir -p ' .. sys.dirname(filename))
if paths.filep(filename) then
os.execute('mv ' .. filename .. ' ' .. filename .. '.old')
end
print('<trainer> saving network to '..filename)
torch.save(filename, {D = model_D, G = model_G, opt = opt})
end
-- next epoch
epoch = epoch + 1
end
-- test function
function adversarial.test(dataset)
model_G:evaluate()
model_D:evaluate()
local time = sys.clock()
local N = N or dataset:size()[1]
print('\n<trainer> on testing Set:')
for t = 1,N,opt.batchSize do
-- display progress
xlua.progress(t, dataset:size()[1])
----------------------------------------------------------------------
--(1) Real data
local inputs = torch.Tensor(opt.batchSize,opt.geometry[1],opt.geometry[2], opt.geometry[3])
local targets = torch.ones(opt.batchSize)
local k = 1
for i = t,math.min(t+opt.batchSize-1,dataset:size()[1]) do
local idx = math.random(dataset:size()[1])
local sample = dataset[idx]
local input = sample:clone()
inputs[k] = input
k = k + 1
end
local preds = model_D:forward(inputs) -- get predictions from D
-- add to confusion matrix
for i = 1,opt.batchSize do
local c
if preds[i][1] > 0.5 then c = 2 else c = 1 end
confusion:add(c, targets[i] + 1)
end
----------------------------------------------------------------------
-- (2) Generated data (don't need this really, since no 'validation' generations)
local noise_inputs = torch.Tensor(opt.batchSize, opt.noiseDim):normal(0, 1)
local inputs = model_G:forward(noise_inputs)
local targets = torch.zeros(opt.batchSize)
local preds = model_D:forward(inputs) -- get predictions from D
-- add to confusion matrix
for i = 1,opt.batchSize do
local c
if preds[i][1] > 0.5 then c = 2 else c = 1 end
confusion:add(c, targets[i] + 1)
end
end -- end loop over dataset
-- timing
time = sys.clock() - time
time = time / dataset:size()[1]
print("<trainer> time to test 1 sample = " .. (time*1000) .. 'ms')
-- print confusion matrix
print(confusion)
testLogger:add{['% mean class accuracy (test set)'] = confusion.totalValid * 100}
confusion:zero()
end
return adversarial