forked from bitcoin-core/secp256k1
-
Notifications
You must be signed in to change notification settings - Fork 1
/
examples_util.h
108 lines (101 loc) · 4.37 KB
/
examples_util.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
/*************************************************************************
* Copyright (c) 2020-2021 Elichai Turkel *
* Distributed under the CC0 software license, see the accompanying file *
* EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 *
*************************************************************************/
/*
* This file is an attempt at collecting best practice methods for obtaining randomness with different operating systems.
* It may be out-of-date. Consult the documentation of the operating system before considering to use the methods below.
*
* Platform randomness sources:
* Linux -> `getrandom(2)`(`sys/random.h`), if not available `/dev/urandom` should be used. http://man7.org/linux/man-pages/man2/getrandom.2.html, https://linux.die.net/man/4/urandom
* macOS -> `getentropy(2)`(`sys/random.h`), if not available `/dev/urandom` should be used. https://www.unix.com/man-page/mojave/2/getentropy, https://opensource.apple.com/source/xnu/xnu-517.12.7/bsd/man/man4/random.4.auto.html
* FreeBSD -> `getrandom(2)`(`sys/random.h`), if not available `kern.arandom` should be used. https://www.freebsd.org/cgi/man.cgi?query=getrandom, https://www.freebsd.org/cgi/man.cgi?query=random&sektion=4
* OpenBSD -> `getentropy(2)`(`unistd.h`), if not available `/dev/urandom` should be used. https://man.openbsd.org/getentropy, https://man.openbsd.org/urandom
* Windows -> `BCryptGenRandom`(`bcrypt.h`). https://docs.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom
*/
#if defined(_WIN32)
/*
* The defined WIN32_NO_STATUS macro disables return code definitions in
* windows.h, which avoids "macro redefinition" MSVC warnings in ntstatus.h.
*/
#define WIN32_NO_STATUS
#include <windows.h>
#undef WIN32_NO_STATUS
#include <ntstatus.h>
#include <bcrypt.h>
#elif defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__)
#include <sys/random.h>
#elif defined(__OpenBSD__)
#include <unistd.h>
#else
#error "Couldn't identify the OS"
#endif
#include <stddef.h>
#include <limits.h>
#include <stdio.h>
/* Returns 1 on success, and 0 on failure. */
static int fill_random(unsigned char* data, size_t size) {
#if defined(_WIN32)
NTSTATUS res = BCryptGenRandom(NULL, data, size, BCRYPT_USE_SYSTEM_PREFERRED_RNG);
if (res != STATUS_SUCCESS || size > ULONG_MAX) {
return 0;
} else {
return 1;
}
#elif defined(__linux__) || defined(__FreeBSD__)
/* If `getrandom(2)` is not available you should fallback to /dev/urandom */
ssize_t res = getrandom(data, size, 0);
if (res < 0 || (size_t)res != size ) {
return 0;
} else {
return 1;
}
#elif defined(__APPLE__) || defined(__OpenBSD__)
/* If `getentropy(2)` is not available you should fallback to either
* `SecRandomCopyBytes` or /dev/urandom */
int res = getentropy(data, size);
if (res == 0) {
return 1;
} else {
return 0;
}
#endif
return 0;
}
static void print_hex(unsigned char* data, size_t size) {
size_t i;
printf("0x");
for (i = 0; i < size; i++) {
printf("%02x", data[i]);
}
printf("\n");
}
#if defined(_MSC_VER)
// For SecureZeroMemory
#include <Windows.h>
#endif
/* Cleanses memory to prevent leaking sensitive info. Won't be optimized out. */
static void secure_erase(void *ptr, size_t len) {
#if defined(_MSC_VER)
/* SecureZeroMemory is guaranteed not to be optimized out by MSVC. */
SecureZeroMemory(ptr, len);
#elif defined(__GNUC__)
/* We use a memory barrier that scares the compiler away from optimizing out the memset.
*
* Quoting Adam Langley <[email protected]> in commit ad1907fe73334d6c696c8539646c21b11178f20f
* in BoringSSL (ISC License):
* As best as we can tell, this is sufficient to break any optimisations that
* might try to eliminate "superfluous" memsets.
* This method used in memzero_explicit() the Linux kernel, too. Its advantage is that it is
* pretty efficient, because the compiler can still implement the memset() efficiently,
* just not remove it entirely. See "Dead Store Elimination (Still) Considered Harmful" by
* Yang et al. (USENIX Security 2017) for more background.
*/
memset(ptr, 0, len);
__asm__ __volatile__("" : : "r"(ptr) : "memory");
#else
void *(*volatile const volatile_memset)(void *, int, size_t) = memset;
volatile_memset(ptr, 0, len);
#endif
}